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ABSTRACT
Ramanujan filter banks (RFB) are useful to generate time-
period plane plots which allow one to localize multiple pe-
riodic components in the time domain. For such applications,
the RFB produces more satisfactory results compared to short
time Fourier transforms and other conventional methods, as
demonstrated in recent years. This paper introduces a novel
multiplier-less, hence computationally very efficient, struc-
ture to implement Ramanujan filter banks, based on a new
result connecting Ramanujan sums and natural periodic bases.

Index Terms— Ramanujan sums, Ramanujan filter
banks, time-period plane, hidden periodicities, period lo-
calization.

1. INTRODUCTION

Ramanujan filter banks (RFB) were recently introduced in
[11] and further studied in [19]. They find application in ex-
tracting periodicity information in discrete time signals. In
particular they generate a time-period plane plot which al-
lows one to localize periodicities in the time domain. Since
the problem of period estimation and localization is different
from traditional power spectrum estimation using time fre-
quency plots [8], [9], [20], [21], the RFB produces more satis-
factory results compared to short time Fourier transforms and
other conventional methods [5], [14], [18] as demonstrated in
[11], [19]. RFBs are based on the Ramanujan-sum [7] intro-
duced by Ramanujan in 1918. Ramanujan-sums were studied
extensively in the context of period estimation in [15], [16],
[12], [13], and are especially useful when data-lengths are
small, or when periodic components are localized or time-
varying.

In this paper we introduce a novel multiplier-less struc-
ture to implement Ramanujan filter banks. The structure is
computationally more efficient compared to the direct imple-
mentations [11], [19] or other DFT based methods. First we
review Ramanujan filter banks briefly in Sec. 2. Then in Sec.
3 we derive a new result that connects Ramanujan sums to the
natual periodic basis. Based on this we derive the multiplier-
less RFB structure in Sec. 4. Numerical results are then pre-
sented showing that the performance of the new structure is
identical to that of the more expensive structure in [11, 19].

Notations. x(n) has period P if P is the smallest positive
integer such that x(n) = x(n + P ) for all n. (k, q) denotes
the greatest common divisor (gcd) of k and q, so (k, q) = 1
means that they are coprime. lcm(a, b) stands for the least
common multiple. The notation q|N means that q is a divisor
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(or factor) of N . Wq = e−j2π/q , and φ(q) = Euler totient
function [2] (# of integers in 1 ≤ n ≤ q coprime to q).

2. REVIEW OF RAMANUJAN FILTER BANKS

The qth Ramanujan sum (q ≥ 1) is a sequence in n defined as

cq(n) =

q∑
k=1

(k,q)=1

ej2πkn/q =

q∑
k=1

(k,q)=1

W−knq (1)

where −∞ ≤ n ≤ ∞. Thus the summation runs over only
those k that are coprime to q; cq(n) has period q, and its use
in identifying periodicities in signals is well known [6], [10],
[16], [12]. The DFT of one period of cq(n) is nonzero (and
equals q) only at the coprime frequencies k. Regarded as a
filter, its frequency response is made of Dirac functions at the
coprime frequencies 2πk/q (where (k, q) = 1). In practice
the causal FIR version

C(l)
q (z) =

lq−1∑
n=0

cq(n)z
−n (2)

is used and has frequency response demonstrated in Fig. 1
for C(l)

9 (z). Since φ(9) = 6 there are six coprime frequen-
cies (center frequencies of the passbands). Each passband
has width approximately 2π/ql, which gets narrower as l in-
creases. Fig. 2 shows a Ramanujan filter bank with N fil-
ters. Each filter C(l)

q (z) extracts a subspace of the space of
all period-q components of x(n). By analyzing the outputs of
these filters, multiple periodic components of x(n) (periods
≤ N ) can be estimated, based on the following result proved
in [19]:

Theorem 1. The lcm property of Ramanujan filter banks:
In Fig. 2, let x(n) be a period-P input signal with 1 ≤ P ≤
N. Let nonzero outputs be produced by the subset of filters
cqi(n) with periods q1, q2, · · · , qK . Then the periodP is given
by P = lcm {q1, q2, · · · , qK}. ♦
Since the RFB works on real-time signals, its output can be
used to produce a time vs period plot, from which various
periodic components and their localizations can be gleaned.
By contrast, it is shown in [19] that a conventional “comb
filter bank” [4], [1] creates ambiguities in period estimation.

3. RAMANUJAN-SUMS AND NATURAL BASES

It is known that cq(n) is integer valued [7], [15] in spite of
the trigonometric functions in its definition. For example,
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Fig. 1. Frequency response magnitudes of FIR Ramanujan filters
C

(l)
q (ejω), demonstrated for q = 9. (a) Small l, and (b) large l.
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Fig. 2. The Ramanujan analysis filter bank.

c6(n) = {2, 1,−1,−2,−1, 1}, where one period is shown.
To some extent this helps to reduce the multiplier complexity
in the implementations. More significantly, a completely mul-
tiplierless implementation of the filter bank is possible, and is
based on a fundamental result to be derived in this section. It
was shown in [15] that Ramanujan sums satisfy the beautiful
recursion

cq(n) = qδq(n)−
∑
qk|q
qk<q

cqk(n) (3)

Here δq(n) is the periodic impulse, where the “1” oc-
curs at locations that are multiples of q, e.g., δ3(n) =
· · · 0 0 1 0 0 1 0 0 1 0 0 1 · · · Suppose we repeat (3)
for all the divisors of q. For example with q = 10 we have
c10(n)+c5(n)+c2(n)+c1(n) = 10δ10(n), c5(n)+c1(n) =
5δ5(n), c2(n) + c1(n) = 2δ2(n), c1(n) = δ1(n) = 1. This
can be written in matrix form as

[ c10 c5 c2 c1 ]

 1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


︸ ︷︷ ︸

A10

=



10 5 2 1
0 0 0 1
0 0 2 1
0 0 0 1
0 0 2 1
0 5 0 1
0 0 2 1
0 0 0 1
0 0 2 1
0 0 0 1



Here A10 (more generally Aq) is a K × K matrix (K =
number of divisors of q). It is always lower triangular with all
elements equal to “1” or “0”, and with diagonal elements =1.
So it has unit determinant, and A−1

q is also a lower triangular
integer matrix. Thus, in our example we have

[ c10 c5 c2 c1 ] =



10 5 2 1
0 0 0 1
0 0 2 1
0 0 0 1
0 0 2 1
0 5 0 1
0 0 2 1
0 0 0 1
0 0 2 1
0 0 0 1



 1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1


︸ ︷︷ ︸

A−1
10

(4)

Each column dm of the tall matrix on the right can be re-
garded as arising from a periodic signal with period equal to
one of the divisors of q. In fact dm represents the simplest pe-
riodic signal of the form mδm(n) which we call natural peri-
odic signals or periodic impulses. We will show that for any q,
the matrix A−1

q has elements 0, 1, and −1 only. Thus, cq(n)
is an integer linear combination of qkδqk(n) where qk ≤ q
are divisors of q. Moreover in this linear combination all the
coefficients are 0, 1, or −1. For example,

c10(n) = 10δ10(n)− 5δ5(n)− 2δ2(n) + 1

c5(n) = 5δ5(n)− 1

c2(n) = 2δ2(n)− 1 (5)

and so on. So we have the following:

Theorem 2: Connection between Ramanujan-sum and
natural periodic basis. The Ramanujan-sum can be expressed
in the form

cq(n) =
∑
qk|q

αqk × qkδqk(n) (6)

where αqk ∈ {0, 1,−1}. ♦

Remark. It only remains to prove that A−1
q has elements

∈ {0, 1,−1}. Note that Aq was defined as follows: first the
divisors of q are arranged in decreasing order

qK > qK−1 > . . . > q1 (7)

where qK = q and q1 = 1. Then the (i, j)th element of Aq
was defined from the divisors qi and qj as follows:

[Aq]i,j =
{
1 if qi|qj
0 otherwise.

(8)

The order (7) ensures that Aq is lower triangular with diago-
nal elements = 1. If divisors had arbitrary ordering, Aq would
not be lower triangular, but it is immaterial for the claim that
the inverse has elements ∈ {0, 1,−1}. So ordering of divisors
is not fundamental, although convenient.

Proof of Theorem 2. First we show that A−1
q has all ele-

ments ∈ {0, 1,−1} when q is a power of a prime, i.e., q = pα
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(p = prime and α = positive integer). This will then be used
as the basis for an induction argument. When q = pα, its
divisors are the powers 1, p, p2 · · · , pα. So Aq is a lower tri-
angular Toeplitz matrix with all elements on and below the
diagonal equal to unity, as demonstrated below for α = 3:

Aq =

 1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 (9)

Its inverse is therefore the lower triangular Toeplitz matrix

A−1
q =

 1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 (10)

Since lower triangular matrices represent causal LTI filtering,
the above inverse represents the well-known fact that the in-
verse of (1 + z−1 + z−2 + . . .) is 1 − z−1. Thus the inverse
of Aq has elements ∈ {0, 1,−1} whenever q = pα. Next, we
know that any arbitrary q can be written in the form

q = pα1
1 pα2

2 . . . pαL

L (11)

where pi are primes. Our induction will be on the number
of prime factors L. Thus assuming that A−1

q has elements
∈ {0, 1,−1} we will show that the same is true for

q̂ = q × pα (12)

where p is a prime different from pi, i ≤ L. Since (pi, p) =
1, it follows that the set of divisors of q̂ are the integers dpi
where d is any divisor of q and 0 ≤ i ≤ α. For example, let
q̂ = qp. With the divisors of q as in (7), the divisors of q̂ are

{pqK , pqK−1, . . . , pq1} and {qK , qK−1, . . . , q1} (13)

Now consider the matrix Aq̂ . For simplicity assume the divi-
sors are ordered as in (13). Then some thought shows that the
matrix Aq̂ is as follows:

Aq̂ =

[
Aq 0
Aq Aq

]
(14)

Similarly when q̂ = q×pα, the matrix Aq̂ is a block triangular
matrix as demonstrated below for α = 3:

Aq̂ =

Aq 0 0 0
Aq Aq 0 0
Aq Aq Aq 0
Aq Aq Aq Aq

 (15)

In general there are α+ 1 blocks, vertically and horizontally.
The inverse of this matrix is readily verified to be

Bq̂ =

 Bq 0 0 0
−Bq Bq 0 0
0 −Bq Bq 0
0 0 −Bq Bq

 (16)

Here Bq
∆
=A−1

q has elements ∈ {0, 1,−1}. So Bq̂ has ele-
ments ∈ {0, 1,−1}. This easily generalizes to any α.555

4. MULTIPLIER-LESS RAMANUJAN FILTER BANK

Consider again the truncated FIR Ramanujan filters (2) which
have impulse response

c(l)q (n) =
{
cq(n) 0 ≤ n ≤ ql − 1
0 otherwise.

(17)

The filters include l periods of cq(n), and the total duration
is lq. Thus the duration is proportional to the period q which
is being analyzed by the analysis bank. This makes the time
resolution of the filters proportional to the period q. Smaller
periods are analyzed with finer resolution.

We shall now derive a structure for the FIR Ramanujan
filter bank Clq(z), 1 ≤ q ≤ N which is especially attractive
because of its low complexity. We showed that cq(n) can be
expressed in terms of the periodic delta functions δqk(n) as
in (6) where qk|q, and αqk ∈ {0, 1,−1}. Since the FIR filter
c
(l)
q (n) has support 0 ≤ n ≤ ql − 1, the periodic delta δqk(n)

has unit values at n = 0, qk, 2qk, . . . , ql − qk that is, at

n = qki, 0 ≤ i ≤ ql

qk
− 1 (18)

(Fig. 3), where rk = q/qk is an integer. Thus the truncated
periodic delta function has z-transform

lrk−1∑
i=0

z−iqk =
1− z−rkqkl

1− z−qk
=

1− z−ql

1− z−qk
(19)

So the FIR Ramanujan filter for period-q is

C(l)
q (z) =

∑
qk|q

αqkqk ×

(
1− z−ql

1− z−qk

)
(20)

The coefficients αqk are just the integers in the first column
of A−1

q , and we know that αqk ∈ {0, 1,−1}.
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Fig. 3. The q-periodic FIR filter c(l)q (n) in the Ramanujan filter
bank, and the associated periodic delta function δqk (n).

Now consider the analysis filter bank C(l)
q (z), 1 ≤ q ≤ N.

The set of all divisors of all the periods q is contained in the
set of all integers in the range 1 ≤ i ≤ N. We can therefore
implement the filter bank {C(l)

q (z)} by implementing a pre-
filter bank or divisor-filter-bank

Di(z) =

(
1

1− z−i

)
, 1 ≤ i ≤ N (21)
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and a post-filter bank or period-filter-bank,

Fq(z) = 1− z−ql, 1 ≤ q ≤ N (22)

and combining them as shown in Fig. 4. In this figure,
the input to Fq(z) is obtained by taking the outputs vqk(n)
of Dqk(z) where qk|q, and forming the linear combination∑
qk|q αqkvqk(n). So the matrix T has the element “1” on

the diagonals, and elements {0, 1,−1} elsewhere.
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Fig. 4. Implementing an FIR Ramanujan filter bank C(l)
q (z) using

a divisor-filter-bank {Di(z)} and a period-filter-bank {Fq(z)}. T is
lower triangular, and [T]i,j ∈ {0, 1,−1}.

A number of properties of this structure have to be noticed:

1. The filtersDi(z) and Fq(z) are multiplierless. So is the
matrix T which has elements {0, 1,−1}. The only multipliers
are the triangles 1, 2, · · · , N in the figure. So the multiplier
complexity is one simple integer multiplier per filter.

2. The prefilters Di(z) are unstable IIR filters because
they have poles on the unit circle. These poles are eventually
cancelled by the zeros in the FIR post filters Fq(z) (because
the poles came by writing FIR filters in the economic ratio-
nal form (19)). In practice, due to roundoff errors, the IIR
filters can still create instablity. This can be handled in one
of several standard ways known to the signal processing com-
munity. In our simulations we replace the filters with

Di(z/ρ) =

(
1

1− ρiz−i

)
, Fq(z/ρ) = 1− ρqlz−ql (23)

where ρ < 1. This moves the unit-circle poles to points inside
the unit circle. Choice of ρ offers a tradeoff. As ρ → 1, the
filter bank approximates the original Ramanujan filter bank
more accurately, but the roundoff noise gains created by the
pre-filters can be large. The introduction of ρ adds 2N new
multipliers. The total complexity per filter is 3 multipliers.

3. The integer l in the post-filter part is the localization pa-
rameter. A large l means the filter passbands are narrow and
more accurately approximate the impulses. A small l means
better localization in the time domain, for locating periodici-
ties. Since the duration ofC(l)

q (z) is ql, the localization nicely
adjusts according to the period q analyzed by a filter.

4. The structure is scalable: if we have to increase N,
we can do so without changing any of the existing parts: we
just add more prefilters and post filters, and more rows and
columns to T without changing existing element values in T.

Fig. 5 shows an input x(n) which has a period-5 compo-
nent at 50 ≤ n ≤ 100 and a superposition of period 11 and
14 components at 150 ≤ n ≤ 300, buried in noise with SNR
= 5 dB. Fig. 6(a) shows the time-period plane plot obtained
using the conventional implementation of the Ramanujan fil-
ter bank [11, 19], and Fig. 6(b) shows the results with the
multiplierless filter bank of Fig. 4, adjusted for stability using
ρ = 0.999 (Eq. (23)). Here l = 10. The multiplierless filter
bank works very well indeed. In both plots, the periodicities
5, 11, and 14, and their locations can be seen clearly. The
plots show the average of |yq(n)|2, over a symmetric slid-
ing window of size 2q + 1. Filter outputs were normalized
by ‖c(l)q (n)‖ for uniformity, and thresholded appropriately for
contrast. Filtering delays were compensated by shifts.

x(n)	
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periods 11 and 14,	


   n = 150 to 300	



n	


Fig. 5. A signal with periodic components in noise (SNR 5 dB).
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Fig. 6. Time-period plane plots obtained using (a) traditional Ra-
manujan filter bank [11, 19], and (b) the proposed multiplierless ver-
sion (Fig. 4).

5. CONCLUDING REMARKS

We introduced an efficient multiplierless structure for the im-
plementation of Ramanjuan filter banks. The parameters l and
ρ in the structure are crucial to the tradeoff between time lo-
calization, and the accuracy of period estimation. The optimal
choice of these parameters, especially when the input x(n) is
noisy, remains to be studied. It will be of considerable inter-
est to extend these results to the 2D case where periodicity
patterns (lattices) are quite challenging to identify.
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