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ABSTRACT

The last decade of John Cozzens’s tenure at the NSF witnessed the
advent of theory and methods at the heart of modern data science.
These advances include (but are not limited to) compressed sens-
ing, sparse coding, inference methods robust to outliers and missing
data, and convex optimization tools that facilitate a host of novel in-
ference methods. This paper describes how these methods evolved
from classical basis representations of signals to alternative, flexi-
ble representations of signal structure. These new representations
facilitate more accurate and robust inference in many contexts, and
research at the intersection of signal processing, machine learning,
and optimization make it possible to learn new representations from
complex sensor data. This paper explores several key representa-
tions that have emerged in the past decade and their impact on the
signal processing community.

Index Terms— Signal representations, subspaces, sparsity, neu-
ral networks, union of subspaces

1. INTRODUCTION

Signal representations are at the heart of modern signal process-
ing. An accurate and parsimonious model of the information-bearing
component of a signal facilitates more accurate estimation of signals
from noisy observations, reconstruction of signals in ill-posed in-
verse problems, recovery of missing data, higher-power detection
and classification methods, and higher-rate compression methods.

Classically, the signal processing community represented sig-
nals in terms of their Fourier coefficients. While this was a useful
model for radio and radar applications, it has significant limitations
in many application domains because signals are not everlasting, but
rather are transient and can exhibit sudden changes and singularities.
Any signal with a sudden change would have a large number of sig-
nificant Fourier coefficients. This early observation spurred interest
in alternative signal representations.

In general, signal processors seek flexible, parsimonious repre-
sentations of signals – that is, representations with a relatively small
number of degrees of freedom capable of representing broad families
of signals. To see the importance of both flexibility and parsimony
in the context of signal estimation, recall that the mean squared er-
ror of any estimate is the sum of its squared bias and its variance.
Representations with few degrees of freedom lead to estimators with
less sensitivity to noise and hence lower variance, while flexible rep-
resentations exhibit low bias.

Classical subspace models and other parametric representations
are parsimonious but often too inflexible for modern applications.
The past decade of signal processing research has focused on repre-
sentations that leverage sparse, low-rank, and learned signal models
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that more effectively navigate this tradeoff between parsimony and
flexibility. This paper reviews a subset of the major signal represen-
tation categories of the past decade.

2. KNOWN SUBSPACES

Subspace representations arise in a number of settings [1]. Assume
we have a true signal of interest, x∗ =

[
x∗1, . . . , x

∗
p

]> ∈ Rp. Classi-
cal subspace representations represent the signal as x∗ = Uv∗ where
U ∈ Rp×r is a basis for an r-dimensional subspace and v∗ ∈ Rr

is a vector of r subspace basis coefficients. Typically r � p; hence,
if we know U , estimating or detecting x∗ is a function of only r
unknowns rather than p.

For example, fitting a polynomial to observed data can be cast
as estimation using a subspace model. In particular we could let the
subspace basis correspond to a polynomial basis; then finding the
best polynomial approximation to a signal amounts to estimating the
polynomial basis coefficients (corresponding to the polynomial co-
efficients). For a second example, Figure 1 shows a visual represen-
tation of this idea applied to small patches of an image, where each
patch on the left can be represented as a weighted sum of the three
representative patches on the right (which span a patch subspace).

= + + +

= + + +

= + + +

Fig. 1: Image patches represented by a patch subspace. Each patch
on the left is a sum of the four patches (which span the patch sub-
space) on the right. Each column on the right corresponds to the
same patch multiplied by a different weight, and different weights
result in different patches on the left.

3. SPARSIFYING BASES

The known subspace model described above is too inflexible for
many problems. For instance, most photographs do not lie in a sin-
gle subspace. The advent of wavelet-based representations of sig-
nals (cf. [2]) allowed for much more flexible models. In particular,
researchers noted that many signals (such as photographs) could be
represented as a weighted sum of a small number of wavelet basis
functions. On the surface, this may appear equivalent to a subspace
representation, but the key difference here is that the wavelet sub-
space could be detected automatically from the data instead of being
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fixed ahead of time. In particular, one could compute the wavelet
coefficients of a signal and examine the magnitude of all the wavelet
coefficients to determine which subset of wavelet basis functions
generated a subspace containing most of a signal’s energy.

More specifically, we can represent a signal as x∗ = Aθ∗, where
A ∈ Rp×p is a p-dimensional wavelet basis and θ∗ is the vector of
wavelet coefficients. Assume only s � p elements of θ∗ are non-
zeros. If we knew that the indicies of the s non-zero elements of
θ∗ formed a set S∗ ⊆ {1, . . . ,m}, we could let AS∗ ∈ Rp×s be
a matrix corresponding to the s columns of A with column indices
in S∗, and similarly let θ∗S ∈ Rs be subset of elements of θ∗ corre-
sponding to the indices in S∗. Then x∗ = ASθ

∗
S and our model is

equivalent to the subspace model described above. However, in gen-
eral we do not know the set S, so methods leveraging the sparsity of
θ∗ essentially learn both the subspace containing θ∗ and its subspace
coefficients.

(a) (b)

Fig. 2: Sparse wavelet representation of an image. (a) Original cam-
eraman image. (b) Log-magnitudes of wavelet basis coefficients
of cameraman image. Note that many of the coefficients are zero-
valued or close to zero-valued.

Put another way, many signals are sparse in a wavelet basis –
that is, most of the wavelet coefficients are close to zero-valued.
Note the image in Figure 2, showing the cameraman image and the
magnitudes of its wavelet coefficients. Notions of sparse representa-
tions of signals extend well beyond the wavelet basis. In fact, signif-
icant research has been devoted to developing specific bases which
allowed for sparse representations of broad ranges of signals for dif-
ferent applications (cf., [3, 4, 5]). The central theme of sparse basis
representations is that we only need a weighted sum of a small num-
ber of basis functions from a larger collection to accurately represent
a signal. In the context of estimating a signal from noisy observa-
tions and trying to navigate the bias-variance trade-off described in
the introduction, sparse basis representations achieve about the same
variance as that associated with subspace models, but significantly
lower bias for broad families of signals.

4. VARIATIONAL REPRESENTATIONS

Variational representations of signals classically model a signal as
a partial differential equation and use the calculus of variations to
compute properties of the signal [6]. Particularly well-known ex-
amples include the Mumford-Shah model [7] and total variation [8].
Total-variation in particular has experienced a resurgence of atten-
tion in the past decade with the development of new optimization
algorithms which facilitate finding a signal which is both a good fit
to data and which has low total variation (cf., [9]).

The total variation seminorm [6, 9] measures how much a signal

or image varies across pixels, so that a highly variable or noisy sig-
nal has a large TV seminorm,1 while a smooth or piecewise smooth
signal would have a relatively small TV seminorm.

Fig. 3: Magnitude of horizontal and vertical first-order differences
in cameraman image. The sum of these magnitudes is the total vari-
ation of the image.

The (anisotropic) total variation seminorm for an image is de-
fined as

‖x‖TV ,

√
n−1∑
k=1

√
n∑

l=1

|xk,l − xk+1,l|+

√
n∑

k=1

√
n−1∑
l=1

|xk,l − xk,l+1|,

where we slightly abuse of notation by using 2D pixel indices instead
of vector indices by assuming that x ∈ Rn is a square

√
n ×
√
n

image. This highlights the fact that the TV seminorm is simply a
measure of the magnitude of all vertical and horizontal first-order
differences, which are illustrated in Figure 3. This property makes
TV especially well-suited for image denoising and inverse problems.
For instance, if y is a noisy realization of x∗, we might denoise y by
solving the optimization problem

x̂ = argmin
x
‖y − x‖22 + λ‖x‖TV,

where λ > 0 is a tuning parameter [9].

5. MANIFOLDS AND UNIONS OF SUBSPACES

The subspace model described above can be generalized not only
using sparse models, but also by using manifold and union of sub-
spaces models. The manifold representation is useful in a number
of contexts (cf., [10, 11]). Unlike subspaces, manifolds exhibit cur-
vature; however, if the curvature is not too strong then the manifold
can be approximated by a union of shifted subspaces or hyperplanes
[12]. In this context, the best subspace representation of a signal
depends on the signal itself, somewhat analogously to the signal-
dependent subspace corresponding to sparse signal representations.

Manifold and union of subspace models are widespread in im-
age processing (cf., [13, 14]). Figure 4 illustrates how the set of
8 × 8 patches in an image have the potential to be represented with
fewer than 64 degrees of freedom. For instance, methods like non-
local means essentially extract all the patches from an image and
models those patches as lying near a low-dimensional manifold, and
estimate noise-free patches by projecting noisy patches onto locally
linear approximations of that manifold [13]. A cartoon illustration
of patches lying in a union of subspaces is shown in Figure 5.

To better understand the flexibility and parsimony of a union
of subspaces representation, consider K rank-r subspaces lying in
a p-dimensional ambient space. Specifically, given a collection of

1A seminorm is a norm that can have zero value for non-zero vectors.
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Image
Patches

Fig. 4: Image patch space. The set of all overlapping patches in an
image can exhibit structure well-represented by manifolds, unions of
subspaces, or redundant dictionaries.

= + + + + + + + +

= + + + + + + + +

= + + + + + + + +

= + + + + + + + +

= + + + + + + + +

= + + + + + + + +

Fig. 5: Image patches represented by a union of three subspaces.
The first three patches after the equal sign (blue box) span the first
subspace, the second three (red box) span the second subspace, and
the final three (green box) span the final subspace. Each patch on the
left is a weighted sum of patches, as before, but only patches from
one of the three subspaces. Black patches correspond to patches with
zero weight assigned to them. The first and fifth rows correspond to
the second subspace, the second and third rows to the third subspace,
and the fourth and sixth rows to the first subspace.

n “training signals” xi ∈ Rp, for i = 1, . . . , n, one can learn
a union of subspaces that minimizes the sum of squared distances
from the training samples to the representation using an alternat-
ing minimization algorithm (cf., [15] and references therein). The
subspace bases correspond to Krp degrees of freedom and the sub-
space basis coefficients correspond to nr logK degrees of freedom
for n image patches. In contrast, these K subspaces all lie within
a single rank-Kr subspace, so one might consider using principal
components analysis to simply estimate this subspace from the n
training samples. While the basis for this subspace has Krp degrees
of freedom (the same as for the union of subspaces), the subspace ba-
sis coefficients correspond to nrK degrees of freedom for n image
patches. Thus the single subspace model with the same representa-
tion flexibility (and hence same bias) has significantly more degrees
of freedom (and hence more variance).

6. REDUNDANT DICTIONARIES

We saw earlier that sparse representations of signals in a particular
basis yield an effective trade-off between bias and variance for large
families of signals. However, there are some instances where having
a large redundant dictionary of representative signals (i.e., a set of a

representative signals that are linearly dependent upon one another)
can lead to even better representations of signals.

= + + + + + + + · · · + +

= + + + + + + + · · · + +

= + + + + + + + · · · + +

Fig. 6: Image patches represented by a redundant dictionary. Each
patch on the left is a weighted sum of a sparse subset of the many
patches on the right. The patches on the right may be linearly de-
pendent. Different weights result in different patches. Black patches
correspond to patches with zero weight assigned to them.

In general, a large redundant dictionary corresponds to a large
number of degrees of freedom; hence learning or leveraging this rep-
resentation can be sensitive to the number of training samples avail-
able or to noise. To sidestep this challenge researchers have consid-
ered a variety of mechanisms. Early work considered concatenating
a small number of different bases (e.g., a wavelet and Fourier basis
together can be used to represent – and separate – edges and texture
information [16]). More recent research has focused on dictionary
learning [17, 18, 19], in which the dictionary may be highly redun-
dant but each signal can only be represented by a linear combination
of a sparse subset of the dictionary elements; Figure 6 illustrates this
concept. K-SVD: Results 

From'ICCV'tutorial'
h3p://lear.inrialpes.fr/people/mairal/tutorial_iccv09/tuto_part2.pdf''

Fig. 7: Learned dictionary of patches using boat image as training
dataset [20].

Specifically, given a collection of n “training signals” xi, for
i = 1, . . . , n, one can learn a dictionary facilitating sparse represen-
tations by solving the following optimization problem:

(D̂, Â) = argmin
D,A

n∑
i=1

‖xi−DAi‖22+λ‖Ai‖1 subject to ‖D‖F ≤ 1

where Ai is the ith column of A, D̂ is the learned dictionary, and Â
is the collection of sparse weights for the n training signals. Each
column of D̂ corresponds to one entry in the learned dictionary. In
[20], the authors learned a dictionary when the training signals corre-
sponded to small patches of pixels in the “boats” image; the original
image and learned dictionary elements are displayed in Figure 7.
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Fig. 8: Architecture of Google Inception deep neural network [21].

7. (DEEP) NEURAL NETWORKS

Many recent representations of signals have been computed using
deep neural networks. In contrast to the representations considered
earlier in this paper, very little is known about the space of signals
that can be represented by a deep neural network with a particular
architecture, or how much bias and variance is associated with es-
timators or classifiers based on the corresponding representations.
Despite the current lack of theoretical understanding, deep neural
networks have proven effective in a variety of classification and la-
beling tasks, especially for images.

Fig. 9: An illustration of a neural network with two hidden layers.
The output of the first layer is highlighted in green, the second layer
in red, and the third layer in blue. Learned dictionary elements from
[22].

Neural networks, as illustrated in Figure 9, typically have an in-
put layer, and output layer, and one or more intermediate or hidden
layers. Each node corresponds to a nonlinear operation that is ap-
plied to the incoming representations to produce the node output;
for instance, a node might compute a weighted sum of the inputs
and then threshold the result. The values of the weights and thresh-
olds used by these nodes must be learned from training data using
training algorithms that leverage stochastic gradient descent and a
number of engineering innovations. The goal of the training is to
learn an effective collection of weights and thresholds so that the
resulting mapping from input to output nodes closely resembles the
desired classification or encoding. As a result, the outputs of many
of the hidden or intermediate nodes in this network correspond to

features associated with the signals and hence can be considered a
signal representation, as illustrated in Figure 9 [22]. A network ar-
chitecture developed by Google for image classification and labeling
is shown in Figure 8 [21].

Deep neural networks have received widespread attention re-
cently because of their efficacy on a number of image recognition
tasks. The core ideas underlying neural networks was first developed
in the 1990s, and have seen such a strong recent resurgence. One
reason for this comeback is the availability of much richer and larger
training data sets, such as Google’s ImageNet [23] which contains
O(108) images. Another reason is the availability of high through-
put computing tools that allow computers to train these deep neural
networks from a large number of different starting conditions with
a large number of training samples in a relatively small amount of
time. Despite these successes, the utility of deep neural networks
for settings in which much smaller collections of training data are
available remains an open question.

8. CONCLUSIONS

This paper has reviewed various signal representations that have
evolved over the past decade, often through research supported by
NSF programs managed by John Cozzens. As these representations
have been developed over the past decade, they have led to signif-
icant advances in our ability to perform signal estimation, recon-
struction, classification, and recognition. The conventional wisdom
that parsimonious representations reduce sensitivity to noise, miss-
ing data, and high compression ratios has played a significant role
in these developments, aided by novel computational methods for
learning nonlinear representations from real data that do not restrict
signal processors to linear methods with closed-form expressions.
Cozzens’ support of this research has led to a new era of signal
representation for modern data science and signal processing.
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