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ABSTRACT

One of the longstanding problems in spectral graph clustering (SGC)
is the so-called model order selection problem: automated selection
of the correct number of clusters. This is equivalent to the problem
of finding the number of connected components or communities in
an undirected graph. In this paper, we propose AMOS, an automated
model order selection algorithm for SGC. Based on a recent analy-
sis of clustering reliability for SGC under the random interconnec-
tion model, AMOS works by incrementally increasing the number of
clusters, estimating the quality of identified clusters, and providing
a series of clustering reliability tests. Consequently, AMOS outputs
clusters of minimal model order with statistical clustering reliabil-
ity guarantees. Comparing to three other automated graph clustering
methods on real-world datasets, AMOS shows superior performance
in terms of multiple external and internal clustering metrics.

1. INTRODUCTION

Undirected graphs are widely used for network data analysis, where
nodes represent entities or data samples, and the existence and
strength of edges represent relations or affinity between nodes.
The goal of graph clustering is to group the nodes into clusters of
high similarity. Applications of graph clustering, also known as
community detection [1, 2], include but are not limited to graph sig-
nal processing [3–11], multivariate data clustering [12–14], image
segmentation [15, 16], and network vulnerability assessment [17].

Spectral clustering [12–14] is a popular method for graph clus-
tering, which we refer to as spectral graph clustering (SGC). It works
by transforming the graph adjacency matrix into a graph Laplacian
matrix [18], computing its eigendecomposition, and performing K-
means clustering [19] on the eigenvectors to partition the nodes into
clusters. Although heuristic methods have been proposed to auto-
matically select the number of clusters [12,13,20], rigorous theoret-
ical justifications on the selection of the number of eigenvectors for
clustering are still lacking and little is known about the capabilities
and limitations of spectral clustering on graphs.

Based on a recent development of clustering reliability analysis
for SGC under the random interconnection model (RIM) [21], we
propose a novel automated model order selection (AMOS) algorithm
for SGC. AMOS works by incrementally increasing the number of
clusters, estimating the quality of identified clusters, and providing
a series of clustering reliability tests. Consequently, AMOS outputs
clusters of minimal model order with statistical clustering reliabil-
ity guarantees. Comparing the clustering performance on real-world
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datasets, AMOS outperforms three other automated graph clustering
methods in terms of multiple external and internal clustering metrics.

2. RELATED WORK

Most existing model selection algorithms specify an upper bound
Kmax on the number K of clusters and then select K based on op-
timizing some objective function, e.g., the goodness of fit of the
k-cluster model for k = 2, . . . ,Kmax. In [12], the objective is
to minimize the sum of cluster-wise Euclidean distances between
each data point and the centroid obtained from K-means cluster-
ing. In [20], the objective is to maximize the gap between the K-th
largest and the (K + 1)-th largest eigenvalue. In [13], the authors
propose to minimize an objective function that is associated with
the cost of aligning the eigenvectors with a canonical coordinate
system. In [22], the authors propose to iteratively divide a cluster
based on the leading eigenvector of the modularity matrix until no
significant improvement in the modularity measure can be achieved.
The Louvain method in [23] uses a greedy algorithm for modularity
maximization. In [24, 25], the authors propose to use the eigenvec-
tors of the nonbacktracking matrix for graph clustering, where the
number of clusters is determined by the number of real eigenvalues
with magnitude larger than the square root of the largest eigenvalue.
The proposed AMOS algorithm not only automatically selects the
number of clusters but also provides multi-stage statistical tests for
evaluating clustering reliability of SGC.

3. THEORETICAL FRAMEWORK FOR AMOS

3.1. Random interconnection model (RIM)

Consider an undirected graph where its connectivity structure is rep-
resented by an n × n binary symmetric adjacency matrix A, where
n is the number of nodes in the graph. [A]uv = 1 if there exists an
edge between the node pair (u, v), and otherwise [A]uv = 0. An un-
weighted undirected graph is completely specified by its adjacency
matrix A, while a weighted undirected graph is specified by a non-
negative matrix W, where nonzero entries denote the edge weights.

Assume there are K clusters in the graph and denote the size of
cluster k by nk. The size of the largest and smallest cluster is de-
noted by nmax and nmin, respectively. Let Ak denote the nk × nk
adjacency matrix representing the internal edge connections in clus-
ter k and let Cij (i, j ∈ {1, 2, . . . ,K}, i 6= j) be an ni × nj matrix
representing the adjacency matrix of inter-cluster edge connections
between the cluster pair (i, j). The matrix Ak is symmetric and
Cij = CT

ji for all i 6= j.
The random interconnection model (RIM) [21] assumes that: (1)

the adjacency matrix Ak is associated with a connected graph of
nk nodes but is otherwise arbitrary; (2) the K(K − 1)/2 matrices
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{Cij}i>j are random mutually independent, and each Cij has i.i.d.
Bernoulli distributed entries with Bernoulli parameter pij ∈ [0, 1].
(3) For undirected weighted graphs the edge weight of each inter-
cluster edge between clusters i and j is independently drawn from
a common nonnegative distribution with mean W ij and bounded
fourth moment. In particular, We call this model a homogeneous
RIM when all random interconnections have equal probability and
mean edge weight, i.e., pij = p and W ij = W for all i 6= j.
Otherwise, the model is called an inhomogeneous RIM.

3.2. Spectral graph clustering (SGC)

The graph Laplacian matrix of the entire graph is defined as L = S−
W, where S = diag(W1n) is a diagonal matrix and 1n(0n) is the
n× 1 column vector of ones (zeros). Similarly, the graph Laplacian
matrix accounting for the within-cluster edges of cluster k is denoted
by Lk. We also denote the i-th smallest eigenvalue of L by λi(L)

and define the partial eigenvalue sum S2:K(L) =
∑K
i=2 λi(L). To

partition the nodes in the graph into K (K ≥ 2) clusters, spectral
clustering [14] uses the K eigenvectors {uk}Kk=1 associated with
the K smallest eigenvalues of L. Each node can be viewed as a K-
dimensional vector in the subspace spanned by these eigenvectors.
K-means clustering [19] is then implemented on the K-dimensional
vectors to group the nodes into K clusters.

Throughout this paper we assume the graph is connected, oth-
erwise the connected components can be easily found and the pro-
posed algorithm can be applied to each connected component sepa-
rately. If the graph is connected, by the definition of the graph Lapla-
cian matrix L, the smallest eigenvector u1 is a constant vector and
λi(L) > 0 ∀ i ≥ 2. As a result, for connected undirected graphs,
it suffices to use the K − 1 eigenvectors {uk}Kk=2 of L for SGC. In
particular, these K − 1 eigenvectors are represented by the columns
of the eigenvector matrix Y = [u2,u3, . . . ,uK ] ∈ Rn×(K−1).

3.3. Phase transitions under homogeneous RIM

Let Y = [YT
1 ,Y

T
2 , . . . ,Y

T
K ]T be the cluster partitioned eigenvec-

tor matrix associated with L for SGC, where Yk ∈ Rnk×(K−1) with
its rows indexing the nodes in cluster k. Under the homogeneous
RIM, let t = p ·W be the inter-cluster edge connectivity parameter.
Fixing the within-cluster edge connections and varying t, Theorem
1 below shows that there exists a critical value t∗ that separates the
behavior of Y for the cases of t < t∗ and t > t∗.

Theorem 1. Under the homogeneous RIM with parameter t =
p ·W , there exists a critical value t∗ such that the following holds
almost surely as nk →∞∀ k ∈ {1, 2, . . . ,K} and nmin

nmax
→ c > 0:

(a)


If t < t∗, Yk = 1nk1TK−1Vk

=
[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
, ∀ k;

If t > t∗, YT
k 1nk = 0K−1, ∀ k;

If t = t∗, Yk = 1nk1TK−1Vk or YT
k 1nk = 0K−1, ∀ k,

where Vk = diag(vk1 , v
k
2 , . . . , v

k
K−1) ∈ R(K−1)×(K−1).

In particular, when t < t∗, Y has the following properties:
(a-1) The columns of Yk are constant vectors.
(a-2) Each column of Y has at least two nonzero cluster-wise con-
stant components, and these constants have alternating signs such
that their weighted sum equals 0 (i.e.,

∑
k nkv

k
j = 0, ∀ j ∈

{1, 2, . . . ,K − 1}).
(a-3) No two columns of Y have the same sign on the cluster-wise
nonzero components.
Furthermore, t∗ satisfies:
(b) tLB ≤ t∗ ≤ tUB, where

tLB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmax
; tUB =

mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmin
.

In particular, tLB = tUB when c = 1.

Theorem 1 (a) shows that there exists a critical value t∗ that sep-
arates the behavior of the rows of Y into two regimes: (1) when
t < t∗, based on conditions (a-1) to (a-3), the rows of each Yk is
identical and cluster-wise distinct such that SGC can be successful.
(2) when t > t∗, the row sum of each Yk is zero, and the incoher-
ence of the entries in Yk make it impossible for SGC to separate
the clusters. Theorem 1 (b) provides closed-form upper and lower
bounds on the critical value t∗, and these two bounds become tight
when every cluster has identical size (i.e., c = 1).

3.4. Phase transitions under inhomogeneous RIM

We can extend the phase transition analysis of the homogeneous
RIM to the inhomogeneous RIM. Let Y ∈ Rn×(K−1) be the
eigenvector matrix of L under the inhomogeneous RIM, and let
Ỹ ∈ Rn×(K−1) be the eigenvector matrix of the graph Lapla-
cian L̃ of another random graph, independent of L, generated
by a homogeneous RIM with cluster interconnectivity parameter
t. We can specify the distance between the subspaces spanned
by the columns of Y and Ỹ by inspecting their principal an-
gles [14]. Since Y and Ỹ both have orthonormal columns, the
vector v of K − 1 principal angles between their column spaces is
v = [cos−1 σ1(YT Ỹ), . . . , cos−1 σK−1(YT Ỹ)]T , where σk(M)
is the k-th largest singular value of a real rectangular matrix M. Let
Θ(Y, Ỹ) = diag(v), and let sin Θ(Y, Ỹ) be defined entrywise.
When t < t∗, the following theorem provides an upper bound on the
Frobenius norm of sin Θ(Y, Ỹ), denoted by ‖ sin Θ(Y, Ỹ)‖F .

Theorem 2. Under the inhomogeneous RIM with interconnection
parameters {tij = pij ·W ij}, let t∗ be the critical threshold value
for the homogeneous RIM specified by Theorem 1, and define δt,n =
min{t, |λK+1(L

n
)− t|}. For a fixed t, if t < t∗ and δt,n → δt > 0

as nk → ∞ ∀ k ∈ {1, 2, . . . ,K}, the following statement holds
almost surely as nk →∞ ∀ k and nmin

nmax
→ c > 0:

‖ sin Θ(Y, Ỹ)‖F ≤
‖L− L̃‖F

nδt
.

Furthermore, let tmax = maxi6=j tij . If tmax < t∗, then

‖ sin Θ(Y, Ỹ)‖F ≤ min
t≤tmax

‖L− L̃‖F
nδt

.

By Theorem 1, since under the homogeneous RIM the rows
of Ỹ has cluster-wise separability when t < t∗, Theorem 2
shows that under the inhomogeneous RIM cluster-wise separa-
bility in Y can still be expected provided that the subspace distance
‖ sin Θ(Y, Ỹ)‖F is small and t < t∗. Moreover, if tmax < t∗, we
can obtain a tighter upper bound on ‖ sin Θ(Y, Ỹ)‖F . These two
theorems serve as the cornerstone of the proposed AMOS algorithm,
and the proofs are given in the extended version [21].

4. AUTOMATED MODEL ORDER SELECTION (AMOS)
ALGORITHM FOR SPECTRAL GRAPH CLUSTERING

Based on the theoretical framework in Sec. 3, we propose an auto-
mated model order selection (AMOS) algorithm for automated clus-
ter assignment for SGC. The flow diagram of AMOS is displayed in
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Fig. 1: Flow diagram of the proposed automated model order selec-
tion (AMOS) algorithm for spectral graph cluster (SGC).

Algorithm 1 p-value computation of V-test for the RIM test

Input: An ni × nj interconnection matrix Ĉij

Output: p-value(i, j)

x = Ĉij1nj (# of nonzero entries of each row in Ĉij)
y = nj1ni − x (# of zero entries of each row in Ĉij)
X = xTx− xT1ni and Y = yTy − yT1ni .

N = ninj(nj − 1) and V =
(√

X +
√
Y
)2

.

Compute test statistic Z = V−N√
2N

Compute p-value(i, j)= 2 ·min{Φ(Z), 1− Φ(Z)}

Fig. 1, and the algorithm is summarized in Algorithm 2. The AMOS
codes can be downloaded from https://github.com/tgensol/AMOS.

AMOS works by iteratively increasing the number of clustersK
and performing multi-stage statistical clustering reliability tests un-
til the identified clusters are deemed reliable. The statistical tests in
AMOS are implemented in two phases. The first phase is to test the
RIM assumption based on the interconnectivity pattern of each clus-
ter (Sec. 4.1), and the second phase is to test the homogeneity and
variation of the interconnectivity parameter pij for every cluster pair
i and j in addition to making comparisons to the critical phase tran-
sition threshold (Sec. 4.2). The proofs of the established statistical
clustering reliability tests are given in the extended version [21].

The input graph data of AMOS is a matrix representing a con-
nected undirected weighted graph. For each iteration in K, SGC is
implemented to produce K clusters {Ĝk}Kk=1, where Ĝk is the k-th
identified cluster with number of nodes n̂k and number of edges m̂k.

4.1. RIM test via p-value for local homogeneity testing

Given clusters {Ĝk}Kk=1 obtained from SGC with model order K,
let Ĉij be the n̂i × n̂j interconnection matrix of between-cluster
edges connecting clusters i and j. The goal of local homogeneity
testing is to compute a p-value to test the hypothesis that the iden-
tified clusters satisfy the RIM. More specifically, we are testing the
null hypothesis that Ĉij is a realization of a random matrix with
i.i.d. Bernoulli entries (RIM) and the alternative hypothesis that Ĉij

is not a realization of a random matrix with i.i.d Bernoulli entries
(not RIM), for all i 6= j, i > j. To compute a p-value for the RIM
test we use the V-test [26] for homogeneity testing of the row sums
of each interconnection matrix Ĉij . Specifically, the V-test tests that
the rows of Ĉij are all identically distributed. For any Ĉij the test
statistic Z of the V-test converges to a standard normal distribution
as ni, nj →∞, and the p-value for the hypothesis that the row sums
of Ĉij are i.i.d. is p-value(i, j) = 2 ·min{Φ(Z), 1−Φ(Z)}, where
Φ(·) is the cumulative distribution function (cdf) of the standard nor-
mal distribution. The proposed V-test procedure is summarized in
Algorithm 1. The RIM test on Ĉij rejects the null hypothesis if
p-value(i, j) ≤ η, where η is the desired single comparison sig-
nificance level. The AMOS algorithm won’t proceed to the phase
transition test stage (Sec. 4.2) unless every Ĉij passes the RIM test.

Algorithm 2 Automated model order selection (AMOS) algorithm
for spectral graph clustering (SGC)

Input: a connected undirected weighted graph, p-value signifi-
cance level η, RIM confidence interval parameters α, α′

Output: number of clusters K and identified clusters {Ĝk}Kk=1

Initialization: K = 2. Flag = 1.
while Flag= 1 do

Obtain K clusters {Ĝk}Kk=1 via spectral clustering (∗)
# Local homogeneity testing #
for i = 1 to K do

for j = i+ 1 to K do
Calculate p-value(i, j) from Algorithm 1.
if p-value(i, j) ≤ η then Reject RIM

Go back to (∗) with K = K + 1.
end if

end for
end for
Estimate p̂, Ŵ , {p̂ij}, {Ŵ ij}, and t̂LB specified in Sec. 4.2.
# Homogeneous RIM test #
if p̂ lies within the confidence interval in (1) then

# Homogeneous RIM phase transition test #

if p̂ · Ŵ< t̂LB then Flag= 0.
else Go back to (∗) with K = K + 1.
end if

else if p̂ does not lie within the confidence interval in (1) then
# Inhomogeneous RIM phase transition test #

if
∏K
i=1

∏K
j=i+1 Fij

(
t̂LB

Ŵ ij

, p̂ij

)
≥ 1− α′ then

Flag= 0.
else Go back to (∗) with K = K + 1.
end if

end if
end while
Output K clusters {Ĝk}Kk=1.

4.2. Phase transition tests

Once the identified clusters {Ĝk}Kk=1 pass the RIM test, one can em-
pirically determine the reliability of the clustering results using the
phase transition analysis in Sec. 3. AMOS first tests the assumption
of homogeneous RIM, and performs the homogeneous RIM phase
transition test by comparing the empirical estimate t̂ of the inter-
connectivity parameter t with the empirical estimate t̂LB of the lower
bound tLB on t∗ based on Theorem 1. If the test on the assumption of
homogeneous RIM fails, AMOS then performs the inhomogeneous
RIM phase transition test by comparing the empirical estimate t̂max

of tmax with t̂LB based on Theorem 2.
• Homogeneous RIM test: The homogeneous RIM test is summa-

rized as follows. Given clusters {Ĝk}Kk=1, we estimate the intercon-
nectivity parameters {p̂ij} by p̂ij =

m̂ij
n̂in̂j

, where m̂ij is the number
of inter-cluster edges between clusters i and j, and p̂ij is the max-
imum likelihood estimator (MLE) of pij . Under the homogeneous

RIM, the estimate of the parameter p is p̂ =
2(m−

∑K
k=1 m̂k)

n2−
∑K
k=1

n̂2
k

, where

m̂k is the number of within-cluster edges of cluster k and m is the
total number of edges in the graph. A generalized log-likelihood ra-
tio test (GLRT) is used to test the validity of the homogeneous RIM.
By the Wilk’s theorem [31], an asymptotic 100(1−α)% confidence
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Dataset Node Edge Ground truth
IEEE reliability test
system (RTS) [27]

73 power
stations

108
power lines

3 power
subsystems

Hibernia Internet
backbone map [28]

55 cities
162
connections

American &
Europe cities

Cogent Internet
backbone map [28]

197 cities
243
connections

American &
Europe cities

Minnesota road
map [29]

2640
intersections

3302 roads None

Facebook [30] 4039 users
88234
friendships

None

Table 1: Summary of real-world datasets.

interval for p in an assumed homogeneous RIM is{
p : ξ(K2 )−1,1−α

2
≤ 2

K∑
i=1

K∑
j=i+1

I{p̂ij∈(0,1)} [m̂ij ln p̂ij (1)

+(n̂in̂j − m̂ij) ln(1− p̂ij)]− 2

(
m−

K∑
k=1

m̂k

)
ln p

−

[
n2 −

K∑
k=1

n̂2
k − 2

(
m−

K∑
k=1

m̂k

)]
ln(1− p) ≤ ξ(K2 )−1,α

2

}
,

where ξq,α is the upper α-th quantile of the central chi-square distri-
bution with degree of freedom q. The clusters pass the homogeneous
RIM test if p̂ is within the confidence interval specified in (1).
• Homogeneous RIM phase transition test: By Theorem 1, if

the identified clusters follow the homogeneous RIM, then they are

deemed reliable when t̂ < t̂LB, where t̂ = p̂ ·Ŵ , Ŵ is the average of

all between-cluster edge weights, and t̂LB =
mink∈{1,2,...,K} S2:K(L̂k)

(K−1)n̂max
.

• Inhomogeneous RIM phase transition test: If the clusters fail
the homogeneous RIM test, we then use the maximum of MLEs of
tij’s, denoted by t̂max = maxi>j t̂ij , as a test statistic for testing
the null hypothesis H0: t̂max < tLB against the alternative hypothe-
sis H1: t̂max ≥ tLB. The test accepts H0 if t̂max < tLB and hence
by Theorem 2 the identified clusters are deemed reliable. Using the
Anscombe transformation on the p̂ij’s for variance stabilization [32],

let Aij(x) = sin−1

√
x+ c′

n̂in̂j

1+ 2c′
n̂in̂j

, where c′ = 3
8

. Under the null

hypothesis that t̂max < tLB, from [33, Theorem 2.1], an asymp-
totic 100(1 − α′)% confidence interval for t̂max is [0, ψ], where
ψ(α′, {t̂ij}) is a function of the precision parameter α′ ∈ [0, 1] and
{t̂ij}. Furthermore, it can be shown that verifying ψ < t̂LB is equiv-
alent to checking the condition

K∏
i=1

K∏
j=i+1

Fij

(
t̂LB

Ŵ ij

, p̂ij

)
≥ 1− α′, (2)

where Fij(x, p̂ij) = Φ
(√

4n̂in̂j + 2 · (Aij(x)−Aij(p̂ij))
)
·

I{p̂ij∈(0,1)} + I{p̂ij<x}I{p̂ij∈{0,1}}, and I is the indicator function.

5. EXPERIMENTS ON REAL-WORLD DATASETS

We implement the proposed AMOS algorithm on the real-world net-
work datasets in Table 1, and compare the clustering results with
three other automated graph clustering methods, including the self-

Dataset Method NMI RI F C NC

IEEE RTS
(3)

AMOS (3)
Louvain (6)

NB (3)
ST (2)

.89

.74

.75

.74

.96

.84

.88

.78

.94

.67

.81

.75

.046

.144

.070

.021

.068

.169

.100

.041

Hibernia
(2)

AMOS (2)
Louvain (6)

NB (2)
ST (2)

1.0
.27
.73
.88

1.0
.51
.89
.96

1.0
.33
.90
.97

.030

.222

.027

.028

.057

.263

.053

.050

Cogent
(2)

AMOS (4)
Louvain (11)

NB (3)
ST (14)

.42

.25

.26

.34

.63

.54

.54

.55

.53

.26

.58

.29

.036

.186

.073

.148

.049

.204

.109

.164

Minnesota
(-)

AMOS (46)
Louvain (33)

NB (35)
ST (100)

- - -

.074

.290

.140

.119

.076

.299

.144

.120

Facebook
(-)

AMOS (5)
Louvain (17)

NB (55)
ST (7)

- - -

.004

.076

.478

.006

.004

.079

.486

.007

Table 2: Performance comparison of automated graph clustering al-
gorithms. The number in the parenthesis of the Dataset (Method)
column shows the number of ground-truth (identified) clusters. “-”
means not available due to lack of ground-truth cluster information.
For each metric, the best method is highlighted in bold face. For each
dataset, AMOS has the most clustering metrics of best performance.

tuning method (ST) [13], the nonbacktracking matrix method (NB)
[24, 25], and the Louvain method [23]. For AMOS, we use the
degree normalized adjacency matrix [14] as the input graph data,
and set α = α′ = 0.05 and η = 10−5. For performance eval-
uation, multiple clustering metrics are computed for assessing the
clustering quality. These metrics are normalized mutual information
(NMI) [34], Rand index (RI) [34], F-measure (F) [34], conductance
(C) [15], and normalized cut (NC) [15]. For NMI, RI, and F, higher
value means better clustering performance, whereas for C and NC,
lower value means better clustering performance.

Table 2 summarizes the clustering performance of the datasets
in Table 1. For each dataset, AMOS has the most clustering met-
rics of best performance among these four methods, which demon-
strates the robustness and reliability of AMOS. In particular, for the
datasets with ground-truth cluster information such that the external
clustering metrics NMI, RI, and F can be computed, AMOS shows
significant improvement over other methods. In addition, for clus-
tering metrics over which AMOS does not prevail, its performance
is comparable to the best method.

6. CONCLUSION

This paper presents an automated model order selection (AMOS)
algorithm for spectral graph clustering (SGC). Stemming from the
phase transition analysis on the clustering reliability of SGC under
the random interconnection model, AMOS performs iterative SGC
and multi-stage statistical tests such that it automatically finds the
minimal number of clusters with statistical clustering reliability
guarantees. Experiments on real-world datasets show that AMOS
outperforms other three automated graph clustering methods in
terms of multiple external and internal clustering metrics.
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