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Abstract—A generalized sequential probability ratio test
(GSPRT) is a classical algorithm for binary sequential hypothesis
testing. Though it is well-studied in the literature, there has been
no optimal design of this test due to the difficulty of choosing
its thresholds. In this paper we formulate the binary sequential
hypothesis testing as an optimization problem. The latter is
non-convex, and finding a global minimizer of the objective is
combinatorially complex in the number of stages of the sequential
test. On the other hand, greedily minimizing the objective has
linear complexity but achieves sub-optimal results. We propose
a generalization of the greedy approach that allows the designer
to trade off complexity for closeness of the thresholds to their
optimal values. Simulation results show that the proposed method
gives arbitrarily close solution to optimal by increasing the
window span of future sample distributions that are utilized to set
a current test threshold. The window span is a hyper-parameter
that is optimized for the target application.

Index — GSPRT, Sequential Test, Optimization, Average
Sample Number, False alarm and Miss Probabilities

I. INTRODUCTION

Sequential hypothesis testing is a statistical method
for identifying the true hypothesis within a set of other
candidates. Associated to each hypothesis is a random
sequence of observations with statistical properties that
uniquely mark the hypothesis. A detector evaluates these
properties from the observed information sequence and then
declares the associated hypothesis to be true. The detector
collects more observations in a sequential manner in order
to increase the confidence about the true hypothesis and
reduce the chance of error in the final decision as desired.
As opposed to sequential sampling, batch-mode detection is
based on processing a fixed sample size. Sequential detection
has the advantage that it reduces the number of collected
samples whenever enough confidence is built about the true
hypothesis. In addition, sequential hypothesis testing allows to
separately optimize for the different types of errors associated
with the tested hypotheses.

Since sequential sampling is important for online decision-
making, and since minimizing the number of observed
information samples is desirable for real-time processing,
sequential detection has important applications in economics,
engineering and medicine [1]. Unfortunately, optimal
sequential testing has only been resolved for independent
stationary observations, while in more general settings this
is often hindered by the design complexity of the detector.
It then becomes critical to push performance more towards
optimal in the space where complexity does not skyrocket
and as imposed by the particular context in which the detector
will function.

Sequential testing is studied in the literature in varied
settings. Wald’s sequential probability ratio test (SPRT) is
the optimal test for independent and identically distributed

observations [2] in binary hypothesis testing. The test
thresholds are computed in terms of type I and type II errors
and are time-invariant. In [3], asymptotic optimality of the
SPRT is proved for the multi-hypothesis version. Optimality
is shown for the generalized SPRT (GSPRT) of time-varying
thresholds in [4] for the case where the observations
are independent but non-identically distributed. This is a
generalization of Wald’s SPRT. Asymptotic optimality is
again established for the GSPRT in [5] in terms of the
expected sample size. The GSPRT is shown to be the optimal
sequential test for dependent observations in [6]. In none of
these works a method to compute the GSPRT thresholds is
constructively described. In [7] these thresholds are computed
(sub-optimally) using the distributions of the sufficient
statistic at each stage of the sequential test disjointly. In a
different context where not all the observed samples belong
to the same hypothesis, a dynamic programming approach is
presented in [8] to compute the thresholds of the generalized
Shiryayev sequential probability ratio test. The test detects a
hypothesis change in minimum time.

In this paper we present a general design technique for the
GSPRT thresholds for independent non-identically distributed
observations. The proposed algorithm allows to dynamically
adjust the complexity-accuracy tradeoff of the detector as
suited for the target application. A formal statement of the
problem including a definition of optimality and the design
considerations is presented in Section II. In Section III we
highlight the challenges that impede the design process. In
Section IV we present an algorithm to compute the GSPRT
thresholds and show how greedy and optimal designs are
corner cases of the generalized algorithm. Simulation results
and insights for three GSPRTs and an SPRT are presented in
Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

Consider a binary hypothesis testing context in which
one of two hypotheses H0 and H1 is true and should be
detected. The detection is based on observing a vector of
samples Y1, . . . , YN characterized by probability distribution
functions f ′′1 (Y1|Hk), . . . , f ′′N (YN |Hk) that are conditioned
on the unknown true hypothesis Hk, k ∈ {0, 1}. The samples
are presented sequentially to a detector rather than in
batch mode. The detector accumulates a sufficient statistic
over the collected samples until a decision can be made
about the true hypothesis within some error probability bound.

Since observation Yn could be sampled from one of two
possible distributions, the detector computes the corresponding
log-likelihood term ln given by

ln = log

(
f ′′n (Yn|H1)

f ′′n (Yn|H0)

)
(1)
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Note that ln is then a function of Yn, and thus log-likelihood
terms {ln} can be described by another set of distributions
f ′1(l1|Hk), . . . , f ′N (lN |Hk) characteristic of the true hypothe-
sis Hk, k ∈ {0, 1}. Observations Y1, . . . , YN are assumed to
be independently distributed. Therefore, upon collecting the
nth sample Yn, the cumulative log-likelihood computed by the
detector can be expressed as

Ln =

n∑
i=1

li (2)

and is distributed according to fn(Ln|Hk) under Hk. This
metric is compared to thresholds an and bn at the nth stage
of the sequential step, where the stage index is defined by
the number of collected samples so far. If Ln < an, the
detector declares H0 to be true. If Ln > bn, hypothesis H1

is declared true. In both cases, the detector no longer collects
additional information samples. However, if an < Ln < bn,
the detector does not decide on the true hypothesis at stage
n of the test but collects observation Yn+1. We always refer
to the lower and higher thresholds as an and bn respectively.
If gn(Ln|Hk) denotes the distribution of Ln under hypothesis
Hk conditioned on an < Ln < bn, then it should be clear that

fn+1(Ln+1|Hk) = gn(Ln+1|Hk) ∗ f ′(Ln+1|Hk) (3)

where ∗ is the convolution operator.

The detector has no control over the distributions of the
observations since this is imposed by nature. Thus the binary
sequential detector becomes uniquely defined by the sets of
thresholds {an} and {bn}, where 1 ≤ n ≤ N . There are three
main considerations upon defining these thresholds. First,
thresholds {an} should be selected so that the probability that
they are traversed by Ln under hypothesis H1 is minimized.
The latter is referred to as probability of miss PM. Second,
thresholds {bn} on the other hand should be chosen to
minimize the probability of false alarm PF , which refers to
the case where Ln surpasses threshold bn at some stage n
of the sequential test. Since the collected observations and
consequently the computed log-likelihood terms are random,
the stage of termination of the sequential test N is random.
The third consideration is to minimize the average sample
number ASN, which is the expected value of N under
hypothesis Hk, k ∈ {0, 1}.

It should be noted that the three considerations are competing.
For instance, both PM and PF are zero if the thresholds are
selected to be infinite. However, in this case the ASN is also
infinite. Thus a detector is optimal if its thresholds are chosen
so that the ASN is minimized for a given specification of
the error probabilities PM and PF . For identically distributed
observations and constant thresholds an and bn, the sequential
probability ratio test or SPRT is optimal, in which case
an = log

(
PM

1−PF

)
and bn = log

(
1−PM
PF

)
. We consider the

problem of designing the generalized version of the SPRT
where thresholds an and bn may be time-varying and the
observations do not necessarily have the same distributions
though they are still independent.

III. CHARACTERISTICS OF THE GSPRT DESIGN

We emphasize three characteristics that hinder the design
of the GSPRT. Without loss of generality, assume that the

true hypothesis is H1. This is unknown to the detector
before collecting data. Instead, the detector is fed with
the prior probabilities of hypotheses H0 and H1, and these
probabilities are equal. Again, the error specifications PM and
PF are equal. This way the design of the detector thresholds
becomes symmetric upon computing these thresholds using
distributions {fn(Ln|Hk)} under the two hypotheses H0 and
H1. Thus we assume that an = −bn, but this can be easily
extended to a different setting.

Under H1 and at stage n of the GSPRT, either a miss, a
detection of H1 or no decision can occur, which happen with
probabilities pn, qn and p̄n = 1 − pn − qn respectively.
Note that these are conditional probabilities, i.e. given that
the GSPRT is at the nth stage. Moreover, with the constraint
an = −bn, pn and qn are inter-dependent. While the design of
the GSPRT is defined by the selection of the test thresholds, an
equivalent set of design parameters is the sequences {pn} and
{qn} indexed over n. The ASN under H1 can be expressed
as follows:

ASN = (q1 + p1) ∗ 1 + (1− q1 − p1)

∗ (1 + [(q2 + p2) ∗ 1 + (1− q2 − p2) ∗ (1 + . . . )]) (4)

Note that the ASN is linear in (q1 + p1). Therefore, m11 =
∂2ASN

∂(q1+p1)2 = 0. Similarly, m22 = ∂2ASN
∂(q2+p2)2 = 0. Using the

properties of the partial derivatives, we also have m12 =
∂2ASN

∂(q1+p1)∂(q2+p2) = ∂2ASN
∂(q2+p2)∂(q1+p1) = m21. Thus,

det

([
m11 m12

m21 m22

])
= −m2

12 ≤ 0 (5)

However, this determinant is a leading principal minor of the
Hessian matrix of the ASN over set {pn+qn}. By Sylvester’s
criterion the Hessian matrix cannot be positive-definite (nor
positive semi-definite), and thus the problem of optimizing
objective (4) is non-convex. This sets a challenge in designing
the GSPRT.

Another challenge is the computation of the distributions and
joint distributions of the sufficient statistic Ln. For instance,
the probability that the GSPRT proceeds up to step n under
H0 and outputs H1 as the true hypothesis at step n is given by
Prob (a1 < L1 < b1, . . . , an−1 < Ln−1 < bn−1, Ln > bn|H0).
Finding the distribution of each {Ln} as well as their joint
distribution is convoluted for general distributions of {Yn}.
The dependence of the thresholds on such distributions
renders finding their optimal values in turn intricate.

The last example illustrates a third important challenge in
designing the GSPRT detector. In particular, the values of
a1 and b1 at step 1 of the test impact the probability of a
false alarm at stage n > 1. Thus although the test proceeds
in a sequential manner, an optimal design in general cannot
be sequential but requires an overview of the distributions of
{Ln} over all the test stages.

IV. COMPUTATION OF THE GSPRT THRESHOLDS

In this section we first derive a different form for the ASN
than (4). Using the new form we identify two approaches to
solve for the thresholds: greedy and optimal. We illustrate the
pros and cons of each. Then we show how these two ap-
proaches fit within a broader space of solutions for the GSPRT
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thresholds. Then we can select an intermediate approach from
this space that achieves high performance of the test at low
design complexity.

A. Modified Expression for the ASN

Let tm = E[N − m|N > m,H1] be the expected number
of extra samples to be collected under H1 before the sequen-
tial test terminates given that m samples have already been
observed, where m ≥ 0 and E[.] is the expectation operator.
With change of variables, the ASN expression in (4) can be
re-defined recursively as

t0 = 1 + p̄1 ∗ t1
t1 = 1 + p̄2 ∗ t2
. . .

tM−2 = 1 + p̄M−1 ∗ tM−1

tM−1 = 1 (6)

where M ≥ N is an arbitrarily large number. In (6), multiply
both sides of the first equation by 1, the second equation by p̄1,
the third equation by p1 ∗ p2,..., and the penultimate equation
by p1 ∗ p2 ∗ ... ∗ pM−2. Starting from the last equation and
substituting each equation in the previous one we obtain

ASN = t0 = 1+(p̄1)+(p̄1∗p̄2)+· · ·+(p̄1∗p̄2∗. . . p̄M−1) (7)

B. Greedy versus Optimal Solutions

Assume only for now that terms p̄1, p̄2, . . . , p̄M−1 are inde-
pendent and have no constraints other than being probability
measures. Given this assumption, we claim that for M − 1
fixed values assigned to elements {p̄m}M−1

m=1 , objective (7)
is minimized when the assignment occurs in non-decreasing
order, i.e. p̄1 < p̄2 < · · · < p̄M−1. To see this, and without
loss of generality, suppose that the first m out of M −1 terms
do not obey this assignment ordering because of one or more
violations. Define the following:

S(l, h) =
h∑
i=l

i∏
j=l

p̄j (8)

where l and h are positive integers and l ≤ h. We prove that
the objective value in (7) can still decrease by showing that
the sum S(1,m) = ASN − 1 can attain a lower value if the
violations are corrected. The fact that these violations occur
to the first m terms p̄1, . . . , p̄m is unimportant with respect
to objective (7) because if the m′ terms p̄1+s, . . . , p̄m′+s are
shuffled for some s > 0 then so are the first m = m′ + s
terms p̄1, . . . , p̄m′+s. The proof of the claim is by induction
on m. Sum S(1, 1) = (p̄1) is minimized if p̄1 is the smallest
in set {p̄m}M−1

m=1 . Assume the sum S(1,m− 1) is minimized
if terms p̄1, . . . , p̄m−1 are the m− 1 smallest elements in set
{p̄m}M−1

m=1 and p̄1 < · · · < p̄m−1. By noting that S(1,m) is
a sum of products of positive terms, probabilities p̄1, . . . , p̄m
should be the m smallest ones of set {p̄m}M−1

m=1 . In addition,
S(1,m) = S(1,m−1)+(p̄1 ∗ p̄2 ∗ · · ·∗ p̄m). The first operand
is minimized when p̄1 < · · · < p̄m−1 by the induction step.
The second operand value does not depend on the ordering
of terms p̄1, p̄2, . . . , p̄m. Thus S(1,m) is minimized when
p̄1 < · · · < p̄m and the induction holds true.

Therefore, by neglecting the constraints on p̄1, p̄2, . . . , p̄M−1

and their inter-dependencies, the ASN is minimized by re-
ducing each term p̄m and giving higher weight to the earlier
ones. However, this solution is infeasible for a GSPRT because
p̄m is the probability that the test does not stop at stage m
given the test is at that stage. Thus the value of p̄m impacts
distributions {fm′(Lm′ |H1)} and consequently modifies the
constraints on {p̄m′},m′ > m at the given specifications
PM and PF . This violates the non-decreasing order of the
above solution. Still, a greedy design of the GSPRT tries to
mimic this solution for {p̄m} but considers these additional
constraints. It then optimizes every product in S(1,M − 1)
in a sequential manner, which gives higher weights for terms
p̄m that show first. This totals to M − 1 simple optimization
problems. By neglecting the inter-dependencies, the greedy
design falls behind an optimal algorithm that improves all the
components of objective S(1,M−1) under all constraints and
dependencies in a single complex problem.

C. Generalized Approach to GSPRT Design
Refer to the GSPRT design algorithm as Algorithm 1. This
is a generalization of the greedy algorithm. While the latter
only optimizes a component of objective (7) at a time starting
with the early components, Algorithm 1 proceeds in the
same manner but spans a wider window and achieves higher
performance at the expense of solving a larger optimization
problem.

Given the test is at stage m, the probability of a miss at this
stage is

PMm
(am) =

∫ am

−∞
fm(Lm|H1)dLm (9)

while that of a false alarm is

PFm(bm = −am) =

∫ ∞
−am

fm(Lm|H0)dLm (10)

Note that detecting H1 at stage m is 1 − PMm
(−am). We

have

PMm
(am) + p̄m − PMm

(−am) = 0 (11)

since probabilities of all outcomes at stage m under H1 add
up to unity. Moreover, to preserve symmetry we have

PMm
(am) = PFm

(−am) (12)

Define D as the depth of Algorithm 1. By sliding a window of
size D over the individual products in S(1,m), each windowed
objective is optimized over D constrained and inter-dependent
parameters {p̄m}. The lower d elements of the minimizer are
used to compute the thresholds of the GSPRT using (11),
and the window is shifted by d, with a potential overlap
with its prior position. Thus D controls the complexity of the
optimization sub-problems while both D and d determine their
count. Algorithm 1 is detailed below. Upon finding {p̄m}, the
computation of the thresholds follows easily from (11). The
greedy and optimal algorithms are special cases of Algorithm 1
with parameters (D = 1, d = 1) and (D = M−1, d = M−1)
respectively. Note that no single value of parameters D and
d should be imposed, which allows to adapt to time-varying
observation distributions.
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Algorithm 1
Input:
• Depth D, increment d
• Distributions {f ′1(l1|Hk), . . . , f ′M−1(lM−1|Hk)}

Output:
• probabilities p̄∗1, . . . , p̄

∗
M−1

1: procedure:
2: for m = 1 to (M − 1) at increments of d do
3: Find {p̂m′}m+D−1

m′=m = argmin
{p̄m′}

m+D−1

m′=m

S(m,m+D − 1)

4: s.t.
5: PMm

(am) +
∑m+D−2
m′=m p̄m′PMm′+1

(am′+1) ≤ PM
6: and (3), (11) and (12) true for all {p̄m′}m+D−1

m′=m
7: (p̄∗m, . . . , p̄m+d−1)← (p̂m, . . . , p̂m+d−1)
8: if m+D − 1 ≥M − 1 then
9: (p̄∗m+d, . . . , p̄

∗
M−1)← (p̂m+d, . . . , p̂M−1)

10: break
11: end if
12: end for
13: end procedure

V. SIMULATION RESULTS AND ANALYSIS

This section illustrates how Algorithm 1 works via sim-
ulation. Though Algorithm 1 works for general independent
distributions of observations Yn, the latter are chosen to be
all identically distributed. This is because we then have a
closed form for the optimal solution of the GSPRT, though
this is not an absolutely exact statement since the closed-form
solution exists for the case where the thresholds are time-
invariant: an = log

(
PM

1−PF

)
. We only apply this constraint

to the SPRT which we simulate against three other GSPRT
designs: D = 1 (greedy), D = 2 and D = 3. Increment d
is one for the three tests. Observations Yn are Gaussian of
distribution N (µ, σ2) under H1 and N (0, σ2) under H0. The
first argument of N (., .) is the mean and the second argument
is the variance. In turn the log-likelihoods ln are also Gaussian:
ln ∼ N ( µ

2

2σ2 ,
µ2

σ2 ) under H1 and ln ∼ N (− µ2

2σ2 ,
µ2

σ2 ) under
H0. Let µ

σ = 1, and PF = PM = 10−5. Each sequential
test is simulated under H1 over a newly generated stream of
observations for 107 runs, allowing for a good measure of each
test statistics.

Fig. 1. Lower thresholds an of three GSPRTs and the SPRT. The upper
thresholds bn are their symmetric with respect to the zero axis.

Figure 1 shows the generated lower thresholds an of the
three GSPRTs and the SPRT. While for the SPRT an is
constant over time, this is not the case for the three other
tests. Due to the difficulty of computing the distributions
gn(Ln|Hk) of the bounded random variable Ln ∈ (an, bn)

as well as the convolution in (3) for the Gaussian case, we
apply a crude approximation to distributions fn(Ln|Hk) for
n > 1 by fitting Gaussian distributions for the cumulative log-
likelihood Ln. Due to these approximations, the constraint in
line 5 of Algorithm 1 is no more tightly met though it is
easy to prove that there is always a feasible GSPRT design
solution upon using the exact distributions fn(Ln|Hk) since
Gaussian observations Yn are continuous and unbounded. Still,
the resultant miss probabilities are 1.01 ∗ 10−3, 8.42 ∗ 10−4

and 6.97 ∗ 10e − 4 for depths D = 1, D = 2 and D = 3
respectively, which is fairly low. For the SPRT the error is
4.9 ∗ 10−6 < PM. Despite the approximations, the results
show an important trend: the miss probability drops for larger
depth values D. Concordantly, the thresholds of the GSPRT
push towards the optimal solution for higher values of D. Note
that a GSPRT with large enough D and exact distributions
fn(Ln|Hk) should perform at least as the SPRT since the
thresholds can still be time-varying.

Fig. 2. Distribution of stopping time N of three GSPRTs and the SPRT.

Another important metric to look at in the evaluation of
the sequential test is its stopping time. By setting an upper
bound of 40 on the number of collected observations, all
the tests but the SPRT terminated more than 99% of the
107 runs. The SPRT on the other hand concluded 93.1% of
the times. Figure 2 shows the distribution of the stopping
time for the four tests. The fat tail of the SPRT curve tells
that the SPRT achieves low-error performance by collecting
more observations. It is remarkable that there is minimal shift
of the stopping times towards higher values as depth D of
the GSPRT increases despite the improvement in the error
performance. This hints that it is sufficient to consider a finite
window of distributions of the observations to achieve a target
performance of the sequential test. In addition, this points
out the flexibility of the GSPRT in suppressing the error at
a minimum ASN, which is gained by the flexibility in setting
the GSPRT thresholds.

VI. CONCLUSION

In this paper a parametrized technique for designing the
GSPRT thresholds is presented. With the parametrization, this
becomes a generalization for greedy and optimal GSPRT
design algorithms. The technique applies for general distribu-
tions of the observations assuming independence, and presents
flexibility in setting the tradeoff between design complexity
and error performance of the sequential test. Three GSPRTs
and the SPRT are simulated. The major bottleneck is in the
evaluation of the distributions of the sufficient statistic over the
stages of the test. Resolving this issue should still prove the
algorithm as more efficient and facilitate tweaking its design
parameters.
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