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ABSTRACT
This paper considers a network of agents generating correlated

data according to a known kernel. The correlation structure might
undergo a change at an unknown time instant, where the post-change
kernel is not fully known. Moreover, due to the data processing and
communication costs, only a subset of agents can be observed at any
time instant. The objective is to detect the change-point with mini-
mum average delay, while the rate of false alarms is controlled. This
paper proposes a coupled data acquisition and decision-making pro-
cess for change detection and establishes its optimality properties.

Index Terms— Change detection, Chernoff, CUSUM

1. INTRODUCTION
Real-time monitoring of a system or process for detecting a change
of behavior arises in many application domains such as detecting
faults or security breaches in networks, and performing quality con-
trol in production lines. It is often of interest to detect abrupt changes
with minimal delay after they occur. At the same time designing
detection rules that are too sensitive to changes in observations are
susceptible to raising frequent false alarms. This creates an inherent
tension between the quickness and the quality of the decisions.

In this paper we focus on a network of agents generating corre-
lated data streams and aim to detect abrupt changes in the correlation
structure of the data. Such change detection problems are studied in
the literature in two different directions. In one direction, the mea-
surements are collected sequentially such that at each time instant
one complete set of measurements are made from all the nodes in
the network [1, 2, 3]. While being effective, such approaches lack
efficiency when facing large networks and high dimensional data, in
which data acquisition incurs substantial communication, sensing,
and decision delay costs. To circumvent this issue, in the second
direction the measurements are first quantized (e.g., with one bit)
and then communicated to the decision-making units [4, 5, 6, 7, 8].
These approaches, while incurring substantially lower sensing and
communication costs, are shown to achieve asymptotic optimality
properties.

In this paper, we take a different approach and impose a con-
straint on the total number of measurements that can be made at
any time instant. Hence, at each time only a subset of nodes with
cardinality below a set threshold can be sampled. Therefore, quick-
est change detection in this setting involves coupled data-acquisition
and decision-making processes, in which at each time instant one
needs to decide whether to stop collecting data and declare a change,
or to continue collecting more data, and in the latter case also to
identify the subset of nodes to be observed. We assume that the
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pre-change distribution is fully known, while the post-change dis-
tribution follows a composite model. The composite post-change
distribution with fixed node selection rules and on-off selection rules
have been studied in [2] and [9], respectively. These studies are
fundamentally different from the problem investigated in this paper
since they examine one sequence of data.

Designing coupled data-acquisition and decision-making pro-
cesses is closely related to controlled sensing, in which the Cher-
noff rule [10] is widely used. Chernoff rule was originally posed for
designing binary hypothesis tests that involve controlling an action
for gathering information. Under the assumption of uniformly dis-
tinguishable hypotheses, it is shown that selecting the action with
the best immediate return, according to proper information mea-
sures, achieves optimal performance in the asymptote of diminish-
ing rate of erroneous decisions. Generalizations and extensions of
the Chernoff rule for various settings are studied in [11, 12, 13, 14,
15]. Specifically, in [15] the Chernoff rule is modified in a way
that the uniformly distinguishable assumption is relaxed for multi-
hypothesis setting by introducing randomized actions into the selec-
tion rule where it is shown that selecting actions randomly at certain
time instants accepts the same asymptotic performance. The results
are also extended to the setting in which available data belong to a
discrete alphabet and follow a stationary Markov model [16]. In this
paper, a modified Chernoff rule is proposed, which combined with
parallel cumulative sum (CUSUM) test, it minimizes the average de-
lay in detecting a change in the correlation structure, while ensuring
that the rate of false alarms is controlled below a pre-specified level.

2. PROBLEM FORMULATION
2.1. Data Model

Consider a network of n nodes indexed by V 4= {1, . . . , n}, in which
each node generates a discrete-time sequence of random variables.
We denote the random variable generated by node i at time t by Xi

t .
Accordingly, we define Xt

4
= {Xi

t : i ∈ V} as the set of random
variables generated by the network at time t. Prior to an unknown
time instant γ, referred to as the change-point, the set of random
variables are assumed to be correlated according to a known struc-
ture (kernel). Specifically, we assume that random variables Xt are
generated according to a known joint distribution with cumulative
distribution function (CDF) F0. After the change point γ, the cor-
relation structure governing Xt changes to one of the M ∈ N pos-
sible correlation structures. In order to account for such a change,
we define Fθ as the joint CDF of Xt after the change-point, where
θ ∈ {θ1, . . . , θM}. Hence, we have a composite model for the post-
change distribution. Therefore,

Xt ∼ F0, t = 1, . . . , γ − 1
Xi ∼ Fθ, t = γ, γ + 1, . . .

. (1)
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We also assume that there exist well-defined probability density
functions (pdfs) corresponding to F0 and Fθ , which we denote by
f0 and fθ , respectively. Also, for any A ⊆ V we denote the joint
pdf of XA

4
= {Xi : i ∈ A} corresponding to the pre-change and

post-change events by f0(XA;A) and fθ(XA;A), respectively. We
denote the probability measure governing sequence {Xt : t ∈ N}
and the expectation with respect to this measure by Pθγ and Eθγ ,
respectively. We also use Pθ∞ and Eθ∞ for the case that no change
occurs and the distribution is always F0.

2.2. Sampling Model
The ultimate objective of the quickest change-point detection (QCD)
in the correlation structure is to sequentially collect measurements
from the network and detect the change-point with minimal delay
after it occurs, while, in parallel, controlling the rate of false alarms.
The setting in which at each time we collect measurements from all
nodes in the network, i.e., at time t observing Xt entirely, is studied
extensively in the literature (c.f. [1, 2, 3]). In contrast, in this pa-
per we assume that only a limited number of measurements can be
taken at any time instant. This could be due to a variety of practical
reasons, such as controlling the cost of sensing, the cost of commu-
nication, and computational complexity. We define m < n as the
maximum number of measurements we afford to make at any time
t. Under this setting, the sampling process sequentially collects m
measurements at-a-time, until the change-point can be detected with
sufficient confidence. Hence, by denoting the index of the nodes
observed at time t ∈ N by

ψt
4
= {ψt,1, . . . , ψt,m} , (2)

and the corresponding samples by

Yt
4
= {Yt,1, . . . , Yt,m} , (3)

we can abstract the information accumulated sequentially by the fil-
tration Ft, where

Ft
4
= σ

(
(Yi, ψi) : i ∈ {1, . . . , t}

)
. (4)

The sampling process continues until the stopping time, denoted by
τ , after which no further measurements are made and a change is
detected. Both the stopping time τ and the selection rule ψt are
Ft-measurable functions. A sampling strategy is completely charac-
terized by Φ

4
= (τ, ψ1, . . . , ψτ ).

2.3. Problem Formulation
We are interested in determining an optimal sampling policy Φ,
which involves dynamically making two intertwined decisions at
each time. Specifically, at each time t, and based on the information
accumulated up to time t, we need to decide whether to terminate the
sampling process and declare a change (i.e., τ = t), or to continue
and collect more measurements. In the latter case, we need to also
determine ψt+1, which specifies the set of nodes to be measured at
the subsequent time instant. Two relevant performance measures for
evaluating the quality of the sampling process are the average delay
between the change-point and the stopping time, and the frequency
of false alarms. To account for the average delay we investigate two
cases in which we adopt Pollak’s and Lorden’s definitions of the
average delay. Specifically, Pollak’s conditional average decision
delay is defined as [17]

CADDθ(Φ)
4
= sup

γ≥1
Eθγ{τ − γ | τ ≥ γ} , (5)

and Lorden’s worst case average decision delay is defined as [18]

WADDθ(Φ)
4
= sup

γ≥1
esssup
Fγ−1

Eθγ{(τ − γ)+ | Fγ−1} . (6)

It can be readily verified that

CADDθ(Φ) ≤WADDθ(Φ) . (7)

Pollak’s criterion is more natural for modeling an unknown change-
point with no random mechanism specifying it (in contrast to
Bayesian settings), while Lorden’s criterion is more apt when the
change-point mechanism depends on the history of the observa-
tions. In order to account for the frequency of the false alarms, we
define [19]

FAR(Φ)
4
=

1

E∞{τ}
, (8)

which captures the average number of false alarms in a sufficiently
long observation interval.

There exists an inherent tension between the average delay and
the rate of false alarms as improving one penalizes the other one.
The optimal sampling strategy can be obtained by controlling the
false alarm rate and minimizing the average decision delay. Hence,
under Pollak’s setting, it is the solution to:

inf
Φ

CADDθ(Φ)

s.t. FAR(Φ) ≤ α
, (9)

and under Lorden’s setting it is the solution to:

inf
Φ

WADDθ(Φ)

s.t. FAR(Φ) ≤ α
, (10)

where α ∈ (0, 1) controls the false alarm rate. We aim to character-
ize sampling procedures that, uniformly for θ ∈ {θ1, . . . , θM}, are
asymptotically optimal. It is noteworthy that even under the setting
without a dynamic selection rule the non-asymptotic optimal solu-
tions to problems (9) and (10) are unknown.

3. QUICKEST CHANGE-POINT DETECTION

In order to treat the QCD problems in (9) and (10), we first briefly
review the relevant procedures that treat one change-point detection
in networks with one node (i.e., one sequence). Such settings do
not involve the dynamic node selection process that we face in the
setting of this paper, and are concerned with only determining the
optimal stopping.

3.1. QCD in Networks with One Node
QCD in one sequence of random variables is studied extensively in
the literature. When the post-change distribution is simple (M =
1), the CUSUM test is shown to be optimal for problem (10), and
asymptotically optimal for (9) as α approaches zero [20]. Specifi-
cally, as α tends to zero under CUSUM we have

CADDθ1(Φ) ≤WADDθ1(Φ) =
| logα|

DKL(fθ1‖f0)
(1 + o(1)) . (11)

where DKL(fθ1‖f0) denotes the Kullback-Leibler (KL) divergence
between pdfs fθ1 and f0. When the post-change distribution is com-
posite, a multiple CUSUM algorithm is asymptotically optimal uni-
formly over θ for both problems [2]. Multiple CUSUM algorithm
consists in M parallel CUSUM tests, and its stopping time is the
minimum of those of the M constituent CUSUM tests. Under such
a multiple CUSUM test, CADDθ(Φ) and WADDθ(Φ) satisfy (11)
for every possible post-change model θ ∈ {θ1, . . . , θM}.
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3.2. QCD in Networks with Complete Data
QCD in a network with n = m is studied extensively in the liter-
ature. When all measurements are collected perfectly (infinite-rate
precision) it is shown that the CUSUM test achieves the same opti-
mality performance as in the single sequence setting [1, 2, 3], i.e.,

CADDθ1(Φ) ≤WADDθ1(Φ) =
| logα|(1 + o(1))

DKL(fθ1(·;V)‖f0(·;V))
.

Also, when the measurements have finite-rate precision, e.g., are
quantized, it is shown that some variations of the CUSUM test ap-
plied locally achieves certain asymptotic optimality properties for
the expected delay [4, 5, 6, 7, 8].

3.3. QCD in Networks with Incomplete Data
The fundamental distinction between the setting of this paper and
those of sections 3.1 and 3.2 is the additional dynamic decision to
be made about the set of m nodes to observe at any time, where
m ∈ {1, . . . , n−1}. To this end, corresponding to each post-change
model θi, for i ∈ {1, . . . ,M}we define set Si ⊆ V such that |Si| =
m and it maximizes the KL divergence between fθi and f0, i.e.,

Si
4
= arg max
{S:|S|=m}

DKL(fθi(·;S)‖f0(·;S)) . (12)

Also, we denote the corresponding KL divergence by

D∗KL(fθi‖f0)
4
= max
{S:|S|=m}

DKL(fθi(·;S)‖f0(·;S)) . (13)

Based on these definitions we provide the following lower bounds
on the average delay metrics.

Theorem 1 Corresponding to any dynamic selection rule Φ, in the
asymptote of α approaching 0, ∀θ ∈ {θ1, . . . , θM} we have

WADDθ(Φ) ≥ CADDθ(Φ) ≥ | logα|
D∗KL(fθ‖f0)

(1 + o(1)) . (14)

Next, we propose an algorithm and prove that it achieves the delay
lower bound provided in Theorem 1.

3.4. Simple Post-change Model
When the post-change distribution is simple, i.e.,M = 1, an optimal
node selection involves simply making measurements from nodes
S1, defined in (12) at all times t ∈ {1. . . . , τ}. This selection rule in
conjunction with the CUSUM test on the observed nodes constitutes
an asymptotically optimal sampling process, as formalized in the
following theorem.

Theorem 2 When M = 1, the CUSUM test combined with a selec-
tion rule that selects S1 at any time instant until the stopping time is
asymptotically optimal as α approaches zero, i.e.,

CADDθ1(Φ) ≤WADDθ1(Φ) ≤ | logα|
D∗KL(fθ1‖f0)

(1 + o(1)) . (15)

3.5. Composite Post-change Model
The main goal of this paper is to treat a composite post-change
model, in which case the set Si varies for different values of
i ∈ {1, . . . ,M}, and the sampling strategy for simple models
(Section 3.4) cannot be adopted. In fact selecting the set Si is cou-
pled with the decision about the true post-change model. Making
such coupled decisions is relevant to the notion of controlled sens-
ing in which the Chernoff rule and its variations are used under

different assumptions, and exhibit different optimality properties.
In the context of this paper, Chernoff rule at each time t identifies
the maximum likelihood (ML) decision about the true value of i,
denoted by î(t), and selects the subset of nodes that have the largest
KL divergence under θî(t), i.e., ψt = Sî(t). To ensure that the ML
decision converges to the true i in finite time and, consequently, the
final decision is asymptotically optimal, the Chernoff rule requires
the distributions to be distinguishable for all possible actions [10],
i.e., for any i ∈ {1, . . . ,M} and S ⊆ V such that |S| = m,

DKL(fθi(·;S)‖f0(·;S)) > 0 . (16)

In [15], this assumption is relaxed for a multi-hypothesis testing
problem by adopting a randomized selection rule at exponentially-
spaced time instants, and the asymptotic performance guarantees are
provided. Specifically, it is shown that by adopting a randomized
selection at time instants t` = da`e for ` ∈ Z+ and a constant a > 1
that is sufficiently close to 1, and using the Chernoff rule at other
time instants, the asymptotically optimal average delay is achieved.

In our setting, however, we cannot directly apply the modified
Chernoff rule with randomization since the change-point is unknown
and the delay between the randomized time instants grows exponen-
tially. This means that if the change-point time is large, i.e., γ � 1,
randomization fails to ensure the convergence of ML decision about
the true i in finite time. To circumvent this issue, we exploit the re-
newal structure of the CUSUM test to ensure that the starting point
of the randomization process is sufficiently close to the change-point
γ. For this purpose, we runM CUSUM tests in parallel, one for each
θi:

C0(θi) = 0 , (17)

Ct(θi) =
[
Ct−1(θi) + log

fθi(Yt;ψt)

f0(Yt;ψt)

]+
, (18)

and define an indicator vector

ζ(t)
4
= [ζ1(t), . . . , ζM (t)] , (19)

where ζi(t) corresponds to the CUSUM test associated with θi at
time t, and initialize it according to ζ(0) = 01×M . We start the
sampling process according to the Chernoff rule with a randomiza-
tion. When the CUSUM value associated with model θi is zero (i.e.,
Ct(θi) = 0) we set its indicator to ζi(t) = 1. This process continues
until time T which is the first time that indicator values correspond-
ing to all models are set to 1, i.e., ζ(T ) = 11×M , then we reset
ζ(T ) = 0, revise the randomization starting point by setting ` = 0
and t` = T +da`e, and resume the sampling process until a change-
point is detected. This procedure is summarized in Algorithm 1, and
its asymptotic optimality properties are formalized in the following
theorem.

Theorem 3 The dynamic CUSUM test of Algorithm 1, which fol-
lows the ML decision for its selection rule, except at time instants
t` = T + da`e for ` = Z+ at which it applies a uniform selection
rule, is an asymptotically optimal solution to (9) and (10) when the
false alarm rate approaches zero, and ∀θ ∈ {θ1, . . . , θM}

WADDθ(τ) =
| logα|

D∗KL(fθ‖f0)
(1 + o(1)) . (20)

Proof: If we show the convergence of ML decision in finite time, the
proof follows a similar procedure as in [16, Theorem 4.1]. We define
ν as the time instant after which the ML decision of i is always true,
and show that randomization guarantees the finiteness of (ν − γ),
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Algorithm 1. Proposed sampling strategy
1 Set t = 0, ` = 0, T = 0, ζ(0) = 0, and C0(θi) = 0

2 While maxi Ct(θi) < log M
α

3 t← t+ 1
4 If t = T + daje for some j ≥ `
5 ψt ← m nodes randomly
6 `← `+ 1
7 Else
8 î← argmaxi Ct(θi)
9 ψt ← Sî
10 End if
11 For i = 1, . . . ,M

12 Ct(θi)←
[
Ct−1(θi) + log

fθi
(Yt;ψt)

f0(Yt;ψt)

]+

13 If Ct(θi) = 0 Then ζi(t)← 1
14 End for
15 If ζ(t) = 1
16 T ← t and `← 0
17 End if
18 End while
19 Stop sampling, declare a change, and τ = t

i.e., when a is selected sufficiently close to 1, for some K > 0 and
any β > 2, ν satisfies:

Pθiγ (ν − γ > t) ≤ Kt−β , ∀i ∈ {1, . . . ,M} . (21)

We denote the last time instant at which ζ(t) is reset to zero by η
and show that Pθiγ (γ − η = j) for j ∈ {1, . . . , γ}, which is the
probability of the event that at least one of the CUSUM values has
remained positive, is upper bounded by

Pθiγ (γ − η = j) = Pθiγ
( M⋃
i=1

(
Cη+k(θi) > 0 for k ∈ {1, . . . , j}

))
(a)
≤

M∑
i=1

Pθiγ
(
Cη+k(θi) > 0 for k ∈ {1, . . . , j}

)
(b)
≤

M∑
i=1

ρji
(c)
≤ Mρjmax , (22)

where (a) holds owing to the union bound, (b) results from applying
the Markov and Cauchy-Schwartz inequalities on

ρi
4
= P∞

(
log

fθi(X)

f0(X)
> 0
)
< 1 , (23)

and (c) is due to definition ρmax
4
= maxi ρi. From the analysis

in [16, Lemma 6.4], it is clear that when the starting point of the
randomization and the change-point are the same, i.e., η = γ, we
have

Pθiγ (ν − γ > t | η = γ) ≤ K1t
−β1 , (24)

for some β1 > 2. Following the same line of argument yields

Pθiγ (ν − γ > t) =

∞∑
j=0

Pθiγ (ν − γ > t | γ − η = j)P(γ − η = j)

≤MK1

∞∑
j=0

(t− j)−β1ρjmax ≤ Kt−β , (25)

for some positive constant K and β, which concludes the proof.
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4. SIMULATION RESULTS
We consider a network consisting of n = 10 nodes generating zero-
mean Gaussian random variables. Prior to the change-point γ the
generated data set at each time are independent with covariance ma-
trix I , and after γ they have a covariance matrix Σ where Σ ∈
{Σ1,Σ2,Σ3}. In Fig. 1 we set m = 2 and compare the conditional
average decision delay of the proposed selection rule and a random
selection rule. It is observed that the proposed selection rule shows a
significant gain compared to the random selection of nodes. Figure 2
compares the number of measurements required for the proposed ap-
proach and the setting that observes the entire network. It is observed
that the proposed approach requires fewer measurements to achieve
the same false alarm rate since it identifies the most relevant nodes
and collects their measurements.

5. CONCLUSION
We have analyzed the problem of quickest change-point detection
over a network of data streams with sampling constraint. We have
considered a setting in which the number of measurements that can
be collected at each time is controlled, and the subset of the nodes
for observation can be dynamically selected based on a data-adaptive
strategy. Also we have assumed that the pre-change data stream has
a known distribution, while the post-change distribution follows a
composite model. A sequential sampling strategy has been proposed
for identifying a change in the distribution for the setting in which
the post-change distribution takes one of the finite number of possi-
ble forms. We have shown that the CUSUM test combined with a
modified Chernoff rule is asymptotically optimal for minimizing the
expected delay as the false alarm rate approaches zero.
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