
Asymptotic Optimality of Consensus-Based
Sequential Probability Ratio Test

Shang Li and Xiaodong Wang

Abstract—This work considers the sequential hypothesis test-
ing problem in the fully distributed sensor network. In specific,
each sensor can observe samples over time, exchange information
with adjacent sensors, and perform testing based on its own
locally available decision statistic. Under such setting, we study
the sequential probability ratio test based on the statistic that
is obtained by running consensus algorithm. It is shown that,
under certain regularity conditions on the data distribution and
network topology, this distributed sequential test procedure yields
the order-2 asymptotically optimal performance at all sensors.

Index Terms—Distributed sequential detection, sensor net-
works, asymptotic optimality, running consensus.

I. INTRODUCTION

The sequential hypothesis testing has been widely adopted
in practice to reduce the data sample size compared to its
fixed-sample-size counterpart. Notably, the sequential proba-
bility ratio test (SPRT) attains the minimum expected sample
sizes under both hypotheses subject to the error probability
constraints [1, 2]. In the meantime, the recent decade has
witnessed the surge of smart devices that can be connected
through wireless links and form cooperative networks. Some
examples include the vehicular Ad Hoc network as part of
the intelligent transportation system, and the social network
that connects people through online friendship. Many applica-
tions pertaining to these examples involve choosing between
two hypotheses with stringent requirements on the decision
latency, necessitating solutions that can integrate the sequential
hypothesis testing into the cooperative networks.

The existing studies mainly approach this problem by as-
suming a fusion center for the sensor network, which may not
be realistic in general. Rather, the fully distributed network
topology, where sensors can only exchange information with
neighbours defined by a network graph (cf. Fig. 1), is yet to
be investigated. Naturally, the distributed network is prone to
sub-optimal cooperative performance due to the lack of global
information at each sensor. Therefore, the key challenge is
to devise efficient information exchange mechanism and test
procedure such that each sensor can optimize its distributed
sequential test, and, if feasible, achieve the globally optimal
performance. To that end, the consensus algorithm serves as a
promising technique for disseminating the global information
to each sensor in the network.

The distributed consensus problem has been well studied
under the static/fixed-sample-size paradigm [3]. There, each
sensor starts with a private sample and aims to obtain the
average of all private samples in the system through inter-
sensor information exchange [4, 5]. In this series of works, a

new sample is not allowed to enter into the network during the
process of “reaching consensus”, thus they are only relevant
to the fixed-sample-size inference problems.

In contrast, the distributed sequential inference problem,
where the complication arises from the successively arriving
samples, is much less understood. Preliminarily, some existing
works tackle this challenge by assuming that the consensus
is reached before new samples are taken [6–9]. The more
practical and interesting scenario is that the sampling and data
aggregation processes take place simultaneously. Under this
setup, [10] proposed the “consensus + innovation” approach
for distributed recursive parameter estimation; [11] intended
to track a stochastic process using a “running consensus” al-
gorithm. The same method was then applied to the distributed
locally optimal sequential test in [12], where the alternative
parameter is assumed to be close to the null one.

While most of the above works focus on reaching consensus
on the value of local decision statistics, limited light has been
shed upon the expected sample size, i.e., stopping time, and
error probabilities of the distributed sequential test. Recently,
[13] combined the “consensus + innovation” approach and
the SPRT to detect the mean-shift of Gaussian samples.
However, their analysis is restricted to one specific testing
problem, and does not reveal any asymptotic optimality. To
fill that void, in this work, we investigate the consensus-based
distributed SPRT for a generic hypothesis testing problem,
and provides the sufficient conditions such that it achieves
the asymptotically optimal test performance at all sensors.

The remainder of the paper is organized as follows. Section
II discusses the problem formulation. In Section III, we inves-
tigate the asymptotic optimality of the consensus-algorithm-
based distributed SPRT, together with the corresponding regu-
larity conditions. In Section IV, simulation based on Gaussian
samples is given to corroborate the theoretical results.

II. PROBLEM STATEMENT

Consider a network of K sensors that sequentially take
samples in parallel. Conditioned on the hypothesis, these
samples are independent and identically distributed at each
sensor and independent across sensors, i.e.,

H0 : X(k)
t ∼ f (k)

0 (x) v.s. H1 : X(k)
t ∼ f (k)

1 (x),
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where k = 1, 2, . . . ,K, t = 1, 2, . . . The log-likelihood ratio
(LLR) and the cumulative LLR are denoted respectively as

s(k)t ! log
f (k)
1 (X(k)

t )

f (k)
0 (X(k)

t )
and S(k)

t !
t∑

j=1

s(k)j . (1)

The inter-sensor communication links determine the network
topology, which can be represented by an undirected graph
G ! {N , E}, with N being the set of sensors and E the set of
edges. In addition, let Nk be the set of neighbouring sensors
that are directly connected to sensor k, i.e., Nk ! {j ∈ N :
{k, j} ∈ E}. In distributed sequential test, at every time slot t
and each sensor k, the following actions take place in order: 1)
taking a new sample, 2) exchanging messages with neighbours,
and 3) deciding to stop for decision or to wait for more data
at time t + 1. Note that the first two actions, i.e., sampling
and communication, will continue even after the local test at
sensor k stops so that other sensors can still benefit from the
same sample diversity. To evaluate the test performance, two
performance metrics are used, namely, the expected stopping
times EiT(k), i = 0, 1, and the type-I and type-II error prob-
abilities, i.e., P0

(
D(k) = 1

)
and P1

(
D(k) = 0

)
respectively.

As such, we aim to find the distributed sequential test such that
the expected stopping times at sensors are minimized subject
to the error probability constraints:

min
{T(k),D(k)}

Ei

(
T(k)

)
, i = 0, 1 (2)

subject to P0

(
D(k) = 1

)
≤ α,

P1

(
D(k) = 0

)
≤ β, k = 1, 2, . . . ,K.

Solving (2) at the same time for k = 1, 2, . . . ,K is a
formidable task except for some special cases (for example,
the fully connected or fully disconnected network); therefore
the asymptotically optimal solution is the next best goal to
pursue. We first introduce the widely-adopted definition for
the asymptotic optimality [14]:

Definition 1. Let T⋆ be the stopping time of the optimum
sequential test that satisfies the two error probability con-
straints with equality. Then, as the Type-I and Type-II error
probabilities α,β → 0, the sequential test that satisfies the
error probability constraints with stopping time T is said to
be order-2 asymptotically optimal if

0 ≤ Ei (T)− Ei (T
⋆) = O(1).

In the ideal case, recalling the optimality of SPRT [1], the
globally optimal performance for (2) is achieved by the so-
called centralized SPRT (C-SPRT) when the network is fully
connected, i.e.,

Tc!min

{
t :St!

1

K

K∑

k=1

S(k)
t /∈(−A,B)

}
, Dc! {STc≥B},

(3)

where {A,B} are constants chosen such that the constraints in
(2) are satisfied with equalities. The asymptotic performance

for the CSPRT as the error probabilities go to zero can be
readily characterized by the following result [2]:

E1 (Tc) =
− logα

∑K
k=1 D

(k)
1

and E0 (Tc) =
− log β

∑K
k=1 D

(k)
0

, (4)

where D(k)
i ! Ei

(
log

f(k)
i (X)

f(k)
1−i(X)

)
is the Kullback-Leibler

divergence (KLD) at sensor k.
In reality, the network is often a sparse one, far from being

fully connected. Nevertheless, if any distributed sequential test
attains the globally optimal performance in (4) only with a
constant difference, it is regarded to be asymptotically optimal
according to the Definition 1. In next section, we will analyze
the consensus-based SPRT and provides the sufficient condi-
tions such that it achieves the order-2 asymptotic optimality.

III. CONSENSUS-BASED SEQUENTIAL PROBABILITY
RATIO TEST

In this section, we consider the distributed SPRT based
on the communication protocol known as the consensus al-
gorithm, in which the sensors aggregate their local decision
statistics. Denoting the decision statistic at sensor k and time
t as η(k)t , then during every time slot t, the consensus algorithm
is carried out as follows:

1) Take a new sample, and add the LLR s(k)t to the local
decision statistic from previous time, resulting in the
intermediate statistic

η̃(k)t = η(k)t−1 + s(k)t . (5)

2) Every sensor exchanges its local intermediate statistic
η̃(k)t with the neighbours, and updates it as the weighted
sum of the available statistics from the neighbours, i.e.,

η̃(k)t = wk,k η̃
(k)
t +

∑

ℓ∈Nk

wℓ,k η̃
(ℓ)
t , (6)

where the weight coefficients wi,j will be specified later.
3) Go to Step 1) for the next sampling time slot t+ 1.
To express the consensus algorithm in a compact form, we

define the following vectors:

ηt ! [η(1)t , η(2)t , . . . , η(K)
t ]T , st ! [s(1)t , s(2)t , . . . , s(K)

t ]T ,

such that the decision statistic vector evolves over time as

ηt = W
(
ηt−1 + st

)
, with η0 = 0, (7)

where the matrix W ! (wi,j) ∈ RK×K is formed by wi,j’s
defined in (6).

As such, the consensus-algorithm-based distributed SPRT
(CA-DSPRT) at sensor k can be implemented with the fol-
lowing stopping time and decision rule:

T(k)
ca ! inf

{
t : η(k)t /∈ (−A,B)

}
, D(k)

ca ! {η(k)

T
(k)
ca

≥B} (8)

where {A,B} are chosen to satisfy the error probability
constraints.

Note that (7) resembles the consensus algorithm in the fixed-
sample-size test [12], where no innovation are introduced,
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i.e., ηt = Wηt−1. In that case, under certain regularity
conditions for W , consensus is reached in the sense ηt →[

1
K

∑K
i=1 η

(k)
0 , . . . , 1

K

∑K
i=1 η

(k)
0

]T
as t → ∞. In contrast,

with the new samples constantly arriving, how such a message-
passing protocol can affect the sequential test at each sensor is
of great interest both from theory and practice point of view.

To begin with, we first impose the following two condi-
tions on the weight matrix W and the distribution of LLR
respectively.

Condition 1. The weight matrix W satisfies

W1 = 1, 1TW = 1T , 0 < σ2 (W ) < 1,

where 1 is an all-one vector, and σi (W ) denotes the ith
singular value of W .

Condition 2. The LLR for the hypothesis testing problem
satisfies that Ei

(
eK

√
K|s(k)

j |
)

is bounded for i ∈ {0, 1}, k =

1, . . . ,K, where s(k)j is the LLR defined in (1).

The first condition essentially regulates the network topol-
ogy and weight coefficients in (7). If we further require
wi,j ≥ 0, then Condition 1 is equivalent to W being doubly
stochastic. The second condition regulates the tail distribution
of the LLR at each sensor. Provided that the testing problem,
network topology, and weight coefficients satisfies the above
conditions, then we have the main theorem for this paper.

Theorem 1. Given that Conditions 1-2 are satisfied, the
asymptotic performance of the CA-DSPRT as α,β → 0 is
characterized by

E1

(
T(k)

ca

)
≤ − logα

∑K
k=1 D

(k)
1

+
σ2(W )

1− σ2(W )
O(1),

E0

(
T(k)

ca

)
≤ − log β

∑K
k=1 D

(k)
0

+
σ2(W )

1− σ2(W )
O(1). (9)

Theorem 1 can be readily proved by invoking the following
two key lemmas. While we omit the proofs for these two
lemmas due to the space limitation, interested readers can refer
to [15] for a detailed development.

Lemma 1. All sensors achieve the same expected stopping
time in the asymptotic regime:

E1

(
T(k)

ca

)
=

B
∑K

k=1 D
(k)
1 /K

+O(1),

E0

(
T(k)

ca

)
=

A
∑K

k=1 D
(k)
0 /K

+O(1), (10)

for k = 1, 2, . . . ,K, as A,B → ∞.

Lemma 1 characterizes how the expected sample sizes of the
CA-DSPRT vary as the decision thresholds go to infinity. The
next lemma relates the error probabilities of the CA-DSPRT
in the same asymptotic regime to the decision thresholds.

Lemma 2. The error probabilities of CA-DSPRT in the
asymptotic regime as A,B → ∞ at each sensor is bounded

above by

logα = logP0

(
D(k)

ca = 1
)
≤ −KB +O(1),

log β = logP1

(
D(k)

ca = 0
)
≤ −KA+O(1). (11)

Combining (10) and (11) leads to (9). By recalling (4), and
the fact that σ2(W ) is a constant, we have

Ei

(
T(k)

ca

)
− Ei(Tc) ≤

σ2(W )

1− σ2(W )
O(1), (12)

implying that CA-DSPRT provides order-2 asymptotically
optimal solution to (2). Note that k = 1, 2, . . . ,K, thus this
conclusion applies to all sensors.

IV. EXAMPLE AND NUMERICAL RESULTS

In this section, we examine the performance of CA-DSPRT
using numerical simulations. The problem of detecting the
mean-shift of Gaussian samples will be considered. Without
loss of generality, the variance is assumed to be one in the
hypothesis testing problem, i.e.,

H0 : X(k)
t ∼ N (0, 1), v.s. H1 : X(k)

t ∼ N (µ, 1).

Accordingly, the LLR at sensor k is given by

s(k)t =X(k)
t µ−µ2

2
∼

⎧
⎨

⎩
N

(
−µ2

2 , µ2
)
, under H0,

N
(

µ2

2 , µ2
)
, under H1,

(13)

with KLDs equal to D(k)
0 = D(k)

1 = µ2

2 . The LLR (13) can
be readily shown to satisfy the Condition 2.

There are various methods to choose W such that Condition
1 can be satisfied, one of which is assigning equal weights to
the data from neighbours [13, 16]. Specifically, the message-
passing protocol (6) becomes

η̃(k)t = (1− |Nk|δ) η̃(k)t + δ
∑

ℓ∈Nk

η̃(ℓ)t ,

= η̃(k)t + δ
∑

ℓ∈Nk

(
η̃(ℓ)t − η̃(k)t

)
.

As such, the weight matrix admits

W = I− δ
(
D −A︸ ︷︷ ︸

L

)
, (14)

where A is the adjacent matrix, whose entries ai,j = 1 if and
only if {i, j} ∈ E , and D ! diag {|N1|, |N2|, . . . , |NK |} is the
called the degree matrix. Their difference is called the Lapla-
cian matrix L which is positive semidefinite. First, W1 = 1
and 1TW = 1T hold for any value of δ due to the definition
of L (i.e., L1 = 0 and 1TL = 0T ). Second, note that W
in (14) is a symmetric matrix, whose second largest singular
value σ2 (W ) = max {1− δλn−1 (L) , δλ1 (L)− 1} < 1,
if and only if 0 < δ < 2

λ1(L) . Within this interval, we set
δ = 2

λ1(L)+λn−1(L) such that the constant terms in Theorem
1 are minimized, or equivalently, σ2(W ) is minimized. Now
that Condition 1-2 are both satisfied, according to Theorem
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Fig. 1. The sensor network represented by a graph G(12, 2).

1, CA-DSPRT achieves the order-2 asymptotically optimal
performance at all sensors.

In the experiment, the alternative mean is set as µ = 0.3; the
network as depicted in Fig. 1 will be used, where each sensor
is connected to the sensors within range 2; and the resulting
weight matrix (14) has σ2 (W ) = 0.6511. Since sensors in
this network have the identical sample distributions, adjacent
sensors and message-passing weights, they should result in the
same test performance. Thus, we only plot the performance at
sensor 1 for illustrative purpose. Also note that, due to the
symmetry of the statistic distribution under H0 and H1, it is
sufficient to plot the performance under one hypothesis, while
the other follows identically.

Fig. 2 illustrates how the error probability and expected
sample size change with the threshold in CA-DSPRT. Specif-
ically, Fig. 2-(a) shows that the error probability of the CA-
DSPRT (marked in blue circles) aligns parallel to the solid line
as expected by Lemma 2, which also corresponds to the C-
SPRT method. Fig. 2-(b) shows that the expected sample size
of CA-DSPRT aligns parallel to that of the C-SPRT as the
threshold increases, which agrees with Lemma 1. Moreover,
for comparison, we will also plot the analytical bounds derived
in [13] for the error probabilities of CA-DSPRT under the
Gaussian-mean-shift setting. They are referred to as the
“existing approximation” in the figures.

Combining 2-(a) and (b) gives the performance curves as
shown in Fig. 3. First, CA-DSPRT only deviates from the
globally optimal performance by a constant margin as A,B →
∞, exhibiting the order-2 asymptotic optimality as stated in
Theorem 1. Again, it is seen that the curve by [13] again
substantially deviates from the true performance; therefore it
does not reveal the asymptotic optimality of T(k)

ca .
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