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ABSTRACT
In this paper, the problem of identifying correlated compo-
nents in a high-dimensional Gaussian vector is considered. In
the setup considered, instead of having to take a full-vector
observation at each time index, the observer is allowed to ob-
serve any subset or full set of components in the vector, and he
has the freedom to design his sampling strategies over time.
The observer aims to find an optimal sampling strategy and
a decision rule to maximize the error exponent (per sample).
We focus on sequential strategies, in which the sampling ac-
tions depend on the observations taken so far. We first de-
rive performance bounds of any sequential sampling strategy.
We then design a low complexity procedure called sequential
diagonal procedure. We show that this low complexity se-
quential procedure substantially outperforms the optimal non-
adaptive strategy when the strength of the signal is strong.

Index Terms— correlation structure; error exponent; se-
quential method; spiked Gaussian model

1. INTRODUCTION

As a crucial modern data analysis technique, covariance ma-
trix structure inference arises in a range of applications in
bioinformatics, image processing, wireless communication,
climate studies, etc. In this paper, the problem of correlated
components identification in Gaussian vectors is considered.
This paper extends our previous results in [1] by considering
adaptive sensing procedures.

Specifically, the underlying Gaussian vector is generated
from a spiked signal model [2–5]; hence, it possesses a spe-
cial correlation structure. It is assumed that s out of p com-
ponents are correlated in the underlying vector, and the goal
is to identify these s correlated components via a sequence of
observations. In contrast to most of existing works, in which
the observer makes his inference based on a sequence of full-
vector observations, this paper considers the scenario that the
observer has the freedom to design his sampling strategy and
is capable of observing any subset of components in the un-
derlying signal. The observer aims to select the most efficient
sampling strategy to maximize the error exponent of the false
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identification (per sample). In this paper, we focus on adap-
tive sampling strategy, which is a strategy that casually de-
pends on observations. Since the observer is allowed to adjust
his sampling strategy whenever he obtains a new observation,
adaptive strategies are expected to outperform non-adaptive
ones. In this paper, we first present performance bounds of
the optimal adaptive sampling strategy, and then we propose a
low complexity adaptive algorithm named as sequential diag-
onal method. We show that the error exponent of the proposed
adaptive method is in inverse proportion to (2 + s), which
significantly outperforms the optimal non-adaptive method,
when the signal is strong.

There are extensive works related to the research in this
paper. We only mention a few of them here. [6] adopts co-
variance thresholding for sparse principal component anal-
ysis. [7–9] focus on detecting a sparse correlation structure
in covariance matrix. [10] considers the sequential detection
problem in Gauss-Markov random fields via adaptive sam-
pling. Different from these works, in our work the observer
focuses on estimating the support of correlated components
rather than detecting the existence of the correlation struc-
ture. The adaptive sampling strategies studied in this paper
is also related to the active sensing problem such as [11], the
sequential testing problem such as [12] and the sparse signal
detection and estimation [13].

The remainder of this paper is organized as follows. The
mathematical model is given in Section 2. Section 3 reviews
the relevant result of non-adaptive strategy. Section 4 discuss-
es adaptive sampling strategies. Section 5 illustrates numer-
ical simulation results. Finally, Section 6 offers concluding
remarks.

Notations: (random) vectors will be presented by bold
face lower-case letters, and their component by [·]n. Matri-
ces will be presented by bold face upper-case letters, and their
component by [·]m,n. A set is denoted by a calligraphic char-
acter, and its cardinality by | · |; || · ||1 denotes the ℓ1 norm of
a vector.

2. MODEL

In this paper, we aim to identify all correlated components in
a spiked signal model. Particularly, the underlying Gaussian
vector xk ∈ Rp is modeled as

xk = σgkv + zk, k = 1, 2, . . . , (1)
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where σ is the strength of the signal, gk ∼ N (0, 1) models the
uncertainty of signal amplitude, and zk ∼ N (0, I) is the ob-
servation noise with I being the identity matrix. gk and zk are
independent to each other, and both of them are independent
and identically distributed (i.i.d.) over k. v ∈ Rp describes
the direction of the underlying signal xk. In this paper, we
assume that the components in v take values in {0, 1}, and v
has s non-zero components. Denote S as the set of indices
of the non-zero components in v. It is easy to verify that the
mean of xk is 0 and the covariance matrix CS is

[CS ]m,n =


1, m = n, m, n /∈ S

1 + σ2, m = n, m, n ∈ S
σ2, m ̸= n, m, n ∈ S
0, otherwise

. (2)

Hence, xk contains s correlated components.
The observer does not know which components are in S.

Hence, there are
(
p
s

)
possible choices for S. The problem then

is modeled as a multi-hypothesis testing problem:

Hi : S = Si, i = 1, . . . ,

(
p

s

)
.

In addition, denote Pi as the probability measure of xk under
Hi, and denote πi,0 as the prior probability of Hi. We assume
that πi,0 > 0 for all i. To ease the notation, we use Ci instead
of CSi

to denote the covariance matrix under Hi.
Instead of having to take a full-vector observation of xk

in each time slot, we assume that the observer is allowed to
observe any subset of the components in xk. Let

U := {u : u ∈ {0, 1}p,u ̸= 0}
be the set of all possible sampling strategies for the observer.
For a strategy u ∈ U , [u]n = 1 indicates that the nth com-
ponent of the underlying signal is observed, while [u]n = 0
indicates the opposite. Note that |U| = 2p− 1. We denote the
members in U as ur, r = 1, . . . , 2p − 1.

The observer takes observations in a sequential manner.
Let A = {a1,a2, . . . ,aτ} be a sampling action taken by the
observer, in which ak ∈ U is the sampling strategy adopted in
time slot k, and τ is the time when the observer stops taking
observations. Throughout the sampling action, we assume
that the observer can totally observe at most N components:

τ∑
k=1

||ak||1 = N. (3)

Let {yk, k = 1, . . . , τ} be the observation sequence, in which

[yk]n =

{
[xk]n if [ak]n = 1
ϕ otherwise . (4)

A is called adaptive if ak casually depends on {y1, . . . ,yk−1};
non-adaptive if ak is pre-determined. Denote ĀN as the set
of all possible sampling actions satisfying (3).

Our goal is to find the most efficient sampling actions to
maximize the error exponent for this multi-hypothesis testing
problem, that is, to solve

lim
N→∞

− 1

N
log min

A∈ĀN ,δτ
Pe(δτ ,A), (5)

in which δτ is the terminal decision rule, and Pe(δτ ,A) :=∑(ps)
i=1 πi,0Pi(δτ ̸= i) is the error probability. We note that

the error exponent defined in (5) modifies the classic defini-
tion of the error exponent, which normalizes the logarithm
of error probability by the number of full observations, by
replacing the normalization factor with the number of total
measurements N .

3. BACKGROUND FROM OPTIMAL
NON-ADAPTIVE SAMPLING STRATEGY

Non-adaptive sampling strategies for the problem formulated
in Section 2 has been discussed in our previous paper [1].
In this section, we review the results that are relevant to this
paper.

Let πi,k = P (Hi is true|y1, . . . ,yk) be the posterior
probability of Hi being true. Since the proposed problem is
under Bayesian framework, it can be shown that the optimal
decision rule (for both adaptive and non-adaptive strategies)
is the maximum posterior probability rule, i.e.,

δ∗τ = argmax
i

πi,τ . (6)

Let fur
i (·) be the conditional pdf for yk given ur under Hi.

Under the optimal decision rule, it can be further shown that

lim
N→∞

− 1

N
log min

A∈AN

Pe(δ
∗
τ ,A) = lim

N→∞

1

N
max
A∈AN

min
i<j

max
λ∈[0,1]

τ∑
k=1

− log

∫
fak
i (yk)

λfak
j (yk)

1−λdyk. (7)

We note that

C(fur
i , fur

j ;λ) := − log

∫
fur
i (y)λfur

j (y)1−λdy (8)

is the Chernoff bound between Hi and Hj (given ur). There-
fore, an intuitive explanation of (7) is that to maximize the
error exponent in (5) is equivalent to find the best strategy A
that maximizes the worst pair-wise error exponent.

Pairwise hypotheses are classified into different categories
by the number of different elements in their support sets Si

and Sj . In particular, let

Dd := {(Hi,Hj) : |Si △Sj | = 2d}, (9)

where △ denotes the symmetric difference of two sets, be
the set of pair-wise hypotheses with d pair different compo-
nents. [1] has discussed the optimal solution for the following
problem

max
A∈AN

min
(i,j)∈D1

max
λ∈[0,1]

τ∑
k=1

− log

∫
fak
i (yk)

λfak
j (yk)

1−λdyk.

(10)

Specifically, the optimal value of (10) is given in the following
theorem:
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Theorem 3.1. 1) The optimal value of (10) is NTl∗ , in which
l∗ = argmaxTl. Tl, l = 1, . . . , p, is calculated as

Tl =
1

l

1(
p
l

) [ s−1∑
m=0

(
2

2

)(
s− 1

m

)(
p− s− 1

l −m− 2

)
K2m+2

+

s−1∑
m=0

(
2

1

)(
s− 1

m

)(
p− s− 1

l −m− 1

)
K2m+1

]
, (11)

in which

K2m−1 =
1

2
log

4 + 2(2m− 1)σ2 + (m− 1)σ4

4(1 + (m− 1)σ2)1/2(1 +mσ2)1/2
,

K2m−2 =
1

2
log

(2 + σ2)[2 + (2m− 3)σ2]

4[1 + (m− 1)σ2]
.

2)(Asymptotic Performance) When σ2 → 0, we have l∗ = p,
and

Tp =
1

p

2s− 1

8
σ4 + o(σ4).

When σ2 → ∞, we have

Tl∗ ≈
(
3

2
− 1

2s

)
1

2p
log σ2(1 + o(1)). (12)

Note that (7) considers the worst case error exponent over
all pairwise hypotheses but (10) only focuses on the pairwise
hypotheses within D1; hence the error exponent for the op-
timal non-adaptive strategy is upper-bounded by the optimal
solution presented in Theorem 3.1. Specifically, we have

lim
N→∞

− 1

N
log min

A∈AN ,δτ
Pe(δτ ,A) ≤ Tl∗ . (13)

Hence, we can conclude that the error exponent for the opti-
mal non-adaptive strategy is in inverse proportion to p when
σ2 is large.

4. ADAPTIVE SAMPLING STRATEGIES

We note that for any fixed N , the optimal adaptive sampling
action and the optimal value can be solved by the dynamic
programming method (DP). However, DP usually leads to a
complex recursive structure, which provides little insight on
the implementation of adaptive sampling strategies. In this
section, we first present performance bounds of the optimal
adaptive sampling action; and then we propose a low com-
plexity adaptive sampling action for the case of large σ2.

4.1. Performance Bounds

Lemma 4.1. If A∗ is the optimal adaptive sampling action,
then

lim
N→∞

− 1

N
logPe(δ

∗
τ ,A∗)

≤ lim
N→∞

1

N
min
i,j

max
A∈AN

max
λ∈[0,1]

2p−1∑
r=1

ρrC(fur
i , fur

j ;λ). (14)

The optimal non-adaptive sampling action certainly pro-
vides a lower bound for the optimal adaptive sampling action.
Comparing with (7), the difference of the upper bound and the
lower bound is to interchange the order maxA and mini,j . Let

QN =
1

N
min

(i,j)∈D1

max
A∈AN

max
λ∈[0,1]

2p−1∑
r=1

ρrC(fur
i , fur

j ;λ). (15)

The limit of QN provides an upper bound for the optimal
adaptive sampling action. The optimal solution of (15) and
corresponding value for QN is presented in the following the-
orem.

Theorem 4.2. 1)(Optimal solution) For an arbitrarily given
pair (Hi,Hj) ∈ D1, let

λ(i,j)∗
r := argmax

λ
C(fur

i , fur
j ;λ) (16)

for r = 1, . . . , 2p − 1, and let

r(i,j)∗ := argmax
r

{
C
(
fur
i , fur

j ;λ(i,j)∗
r

)/
||ur||1

}
. (17)

Then (Hi,Hj), λ(i,j)∗ and A(i,j)∗ =
{
ρ
(i,j)∗
1 , . . . , ρ

(i,j)∗
2p−1

}
is

an optimal solution for QN , in which

λ(i,j)∗ := λ
(i,j)∗
r(i,j)∗

, (18)

ρ(i,j)∗r :=

{
N/||ur||1 if r = r(i,j)∗

0 if r ̸= r(i,j)∗
. (19)

2)(Asymptotic performance bound) When σ2 → 0,

lim
N→∞

QN =
1

s+ 1

2s− 1

8
σ4 + o(σ4). (20)

When σ2 → ∞,

lim
N→∞

QN =
1

2
log σ2(1 + o(1)). (21)

Proof Outline: For an arbitrarily given pair (Hi,Hj) ∈
D1, we have

max
A∈AN

max
λ∈[0,1]

2p−1∑
r=1

ρrC(fur
i , fur

j ;λ)

≤ max
A∈AN

2p−1∑
r=1

ρr||ur||1
maxλ∈[0,1] C(fur

i , fur
j ;λ)

||ur||1

≤ N max
ur∈U

max
λ∈[0,1]

C(fur
i , fur

j ;λ)

||ur||1
. (22)

Since both two inequalities in (22) become equalities for the
solutions presented in this theorem, (18) and (19) are optimal
for QN . Since the Chernoff bound of two Gaussian distribu-
tions has close form expressions [14], the asymptotic upper
bound can be then derived following a direct calculation.

We comment that in general this upper bound is not tight
as the optimal strategy is designed for a specific (Hi,Hj) ∈
D1. However, this result indicates that adaptive sampling ac-
tions has the potential to significantly improve the error expo-
nent.
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4.2. A Low Complexity Adaptive Algorithm

In this subsection, we propose a low complexity adaptive
sampling strategy. The motivating observation is that each
component of the underlying signal xk only has two possible
pdfs: if n ∈ S , the distribution of [xk]n, denoted as h1, is
N (0, 1 + σ2); otherwise, the distribution, denoted as h0, is
N (0, 1). In the proposed algorithm, the observer adopts the
sequential probability ratio test (SPRT) to decide the distri-
bution of each component. In particular, let τn−1 be the time
that the distribution of the (n − 1)th component is decided,
τn is defined as follows:

τn := inf

κ > τn−1 :
κ∏

k=τn−1+1

h1(yk)

h0(yk)
/∈ (A,B)


for n = 1, . . . , p, in which A and B are properly chosen
thresholds, the initial time τ0 = 0 and the observation

yk = [xk]n for τn−1 < k ≤ τn. (23)

The distribution of the nth component in x is decided by

δτn :=

{
claim h1 if

∏τn
k=τn−1+1

h1(yk)
h0(yk)

≥ B

claim h0 if
∏τn

k=τn−1+1
h1(yk)
h0(yk)

≤ A
. (24)

That is, the observer keeps observing the nth component in
the underlying signal as long as the statistic of SPRT within
(A,B). The observer claims that the nth component belongs
to S if the SPRT statistic climbs over the upper bound and
does not belong to if it falls below the lower bound. The ob-
server switches to observe the next component whenever he
makes a decision on the current observing component. The
observer stops the detection procedure when either all the
components in the underlying signal are decided or all the
sampling rights are exhausted. The observer makes errors
when he 1) makes wrong decisions on the distribution of any
components or 2) exhausts all the sampling rights before all
the components are declared.

Johnstone proposed a diagonal thresholding method
in [15], in which the components with largest s sample
variance are selected to estimate the eigenvectors, for the
spiked signal model. Above proposed method can be viewed
as a sequential version of Johnstone’s method since the SPRT
statistic in our scenario can be explicitly written in terms of
sample variance. The performance of the proposed method is
given in the following theorem:

Theorem 4.3. When σ2 → ∞, by setting thresholds

A = B−1 = σ exp {−N/(s+ 2)} , (25)

the error exponent of the sequential diagonal method is

lim
N→∞

− 1

N
logPe ≥

1

2(2 + s)
log σ2(1 + o(1)). (26)

Proof Outline: Let α and γ be the Type I and Type II
error of SPRT, respectively. By union bound inequality, the
error probability is bounded by

Pe ≤ P (τp > N) + sγ + (p− s)α. (27)

We can show that the detection delay of SPRT decays expo-
nentially given thresholds A and B. In particular,

P1(τn − τn−1 > N) ≤ exp{−λ1 logα} exp {−Nt1} ,
P0(τn − τn−1 > N) ≤ exp{−λ0 log γ} exp {−Nt0} ,

where λ0 and λ1 are two constants within (0, 1). t0 and
t1 are constants determined by λ0, λ1 and σ. As a result,
P (τp > N) = P (

∑p
n=1(τn − τn−1) > N) also decays ex-

ponentially. Its bound can be characterized by α, γ, λ0, λ1

and σ. By setting λ0 = 0.5, λ1 = 1/σ and α = γ, this
theorem can be achieved by solving (27).

Note that the error exponent of the optimal non-adaptive
strategy is in inverse proportion to p when σ2 is large; howev-
er that of the sequential diagonal method is in inverse propor-
tion to (2+ s). When s << p, the proposed adaptive strategy
outperforms the optimal non-adaptive strategy significantly.

5. SIMULATION

In this section, we conduct a numerical simulation to compare
the performance of the optimal non-adaptive strategy and the
proposed sequential diagonal thresholding strategy. The sim-
ulation result is shown in Figure 1. In this simulation, we set
p = 7 and s = 3. The red dot-dash line is the performance of
the optimal value presented in Theorem 3.1, and the blue dash
line is that of the diagonal thresholding method. When σ is s-
mall, non-adaptive strategy outperforms the sequential diago-
nal method since non-adaptive sampling strategy explores the
correlation information within the observation vector. How-
ever, the sequential diagonal method outperforms the optimal
non-adaptive strategy when σ is large. This is because the
information within the margin distribution of each element is
sufficient to classify the its distribution, and to sample one
element in each time is a more efficient sampling method.

σ
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Fig. 1. Performance of the sequential diagonal thresholding
method

6. CONCLUSION

In this paper, we have considered the problem of identifying
correlated components in a Gaussian vector. We have derived
performance bounds of any sequential sampling strategy. We
have proposed a low complexity procedure named sequential
diagonal procedure, which substantially outperforms the op-
timal non-adaptive strategy when the signal is strong.
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