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ABSTRACT

This paper focuses on the low rank plus sparse matrix de-
composition problem in big data settings. Conventional al-
gorithms solve high-dimensional optimization problems that
scale with the data dimension, which limits their scalabil-
ity. In addition, existing randomized approaches mostly rely
on blind random sampling. In this paper, the drawbacks of
random sampling from coherent/structured data matrices are
analyzed showing that random sampling cannot provide effi-
cient descriptive sketches of coherent data. In addition, a col-
umn/row subspace pursuit algorithm which recovers the low
rank component via a small set of informative columns/rows
of the data is proposed. The obtained column and row spaces
are updated in each iteration to converge to the column and
row spaces of the low rank matrix. The informative columns
are located using the information embedded in the row space
while the informative rows are identified using the informa-
tion embedded in the column space.

Index Terms— Robust PCA, Randomized Method, Sub-
space Recovery, Low Rank Matrix, Matrix Decomposition

1. INTRODUCTION

There are many important applications in which the given
data matrix D ∈ RN1×N2 can be naturally modeled as

D = L + S, (1)

where L is a low rank (LR) matrix and S a sparse matrix with
arbitrary unknown support [1–7]. The following convex pro-
gram was proposed in [1,2] to directly decompose the matrix
D into its LR and sparse components

min
L̇,Ṡ

λ‖Ṡ‖1 + ‖L̇‖∗ s. t. L̇ + Ṡ = D , (2)

where ‖.‖1 is the `1-norm, ‖.‖∗ the nuclear norm and λ a pa-
rameter that determines the trade-off between the sparse and
LR components [1]. The optimal point of (2) was shown to
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yield exact decomposition if the columns and rows subspaces
of L are sufficiently incoherent with the standard basis and
the non-zero elements of S are sufficiently diffused [1]. The
decomposition algorithm (2) requires savingN1×N2 dimen-
sional matrices in the working memory and the complexity of
solving (2) is O(rN1N2) per iteration (r is the rank of L),
which is prohibitive for high dimensional data [8, 9].

1.1. Randomized approaches

An effective idea to develop scalable decomposition algo-
rithms is to exploit the low dimensional structure of the LR
matrix [10–15]. The idea is to sample a set of columns of D
whose LR component can span the column space (CS) of L.
These sampled columns are decomposed using (2) to learn
the CS of L. Similarly, the row space (RS) of L is obtained
by decomposing a set of randomly sampled rows. Finally, the
LR matrix is recovered using the learned CS and RS. Thus,
instead of decomposing the full scale data, one decomposes
small sketches constructed from subsets of the data columns
and rows [12, 14]. To the best of our knowledge, all current
randomized decomposition algorithms rely on uniform ran-
dom sampling for column/row sampling. However, uniform
sampling is not efficient when the CS/RS of L are coherent
with the standard basis and we might not be able to evade
the high dimensionality of the data with uniform random
sampling. This motivates the work of this paper which fo-
cuses on matrix decomposition using adaptive sampling from
structured and coherent data.

1.2. Definitions

The row space of a matrix L with rank r is said to be inco-
herent with parameter µv , if max

i
‖VTei‖22 ≤

rµv

N2
, where V

is an orthonormal basis for the RS of L. Similarly, the col-
umn space of L is said to be incoherent with parameter µu, if
max
i
‖UTei‖22 ≤

rµu

N1
, where U is an orthonormal basis for

the CS of L [16, 17].
In this paper, it is assumed that the support of S follows

the Bernoulli model with parameter ρ, i.e., each element of S
is equal to zero independently with probability 1− ρ.
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2. NON-UNIFORM DATA DISTRIBUTION

In this section, we provide a theoretical study of the shortcom-
ings of random sampling with coherent data matrices. First,
we show that the coherency of the RS/CS increases when the
distributions of the columns/rows of L are less uniform within
the CS/RS. Subsequently, it is shown that random sampling
does not yield efficient descriptive data sketches if the CS/RS
of L are highly coherent. The proofs of the presented theoret-
ical results are available in [14].

2.1. Studying the coherency of L

In this section, we present results establishing that the co-
herency of the RS of L with the standard basis increases if
the distribution of the columns of L is less uniform in the CS
of L. We assume that the columns follow a subspace cluster-
ing structure [18] as per the following assumption.

Assumption 1 The matrix L can be represented as L =
[U1Q1 ... UnQn]. The CS of {Ui ∈ RN1×r/n}ni=1 are
random r/n-dimensional subspaces in RN1 . The RS of
{Qi ∈ Rr/n×ni}ni=1 are random r/n-dimensional sub-
spaces in {Rni}ni=1, respectively,

∑n
i=1 ni = N2, and

min
i
ni � r/n.

The following lemma establishes a lower bound for the RS
coherency of L.

Lemma 1 If L follows Assumption 1, the rank of L is equal
to r, r/n ≥ 18 logmax

i
ni and ni ≥ 96 rn log ni, 1 ≤ i ≤ n,

then

P

max
i
‖VTei‖22 <

0.5 r

N2

 1

n

N2

min
i
ni

 ≤ 2

n∑
i=1

n−5i . (3)

According to Lemma 1, the RS coherency of L is linear
in N2

min
i
ni

. The factor N2

min
i
ni

is an excellent measure of the

columns distribution. For instance, suppose n = 2 and r = 2,
i.e., the columns lie in a union of two one-dimensional sub-
spaces. A large value of N2

min
i
ni

implies that most of the data

is aligned along a given direction, i.e., the distribution of the
columns is highly non-uniform. Accordingly, if the distribu-
tion of the columns/rows of L is less uniform, the coherency
of the RS/CS of L increases.

2.2. Sampling from coherent data

In this subsection, we highlight two drawbacks of random
sampling from coherent data.
I. Random sampling cannot capture the CS/RS efficiently:
When the distribution of the columns/rows of L is non-
uniform (the coherency of RS/CS is high), we cannot cap-
ture the CS/RS using a small set of randomly sampled

Fig. 1. (Left) The rank of a set of uniformly sampled columns for different
number of clusters. (Right) The rank of the low rank component of sampled
columns after each iteration by Algorithm 1.

columns/rows. To show this fact, we provide a numerical
example and confirm our analysis by Lemma 2.
Numerical example: Suppose L follows Assumption 1, N1 =

200, N2 = 6150, r = 60, {ni}n/2i=1 = 5r
n , and {ni}ni=n/2+1 =

200r
n . Thus, the distribution of the columns of L is strongly

structured and highly non-uniform ( N2

min
i
ni

= 1230 when n =

60). The left plot of Fig. 1 illustrates the rank of the randomly
sampled columns versus the number of sampled columns for
different number of clusters n. When n = 60, it turns out
that we need to sample more than half of the columns to span
the CS. As such, we cannot evade high-dimensionality with
uniform random column/row sampling.

The following lemma confirms our analysis. It shows that
the sufficient number of randomly sampled columns scales
linearly with the RS coherency, which can be quite high if the
columns are distributed non-uniformly (c.f. Lemma 1).

Lemma 2 Suppose m1 columns are sampled uniformly at
random with replacement from the matrix L with rank r. If
m1 ≥ 10µvr log

2r
δ , where µv is the row space coherency

defined in Sec. 1.2, then the selected columns of the matrix L
span the CS of L with probability at least (1− δ).

II. Random sampling requires too many data points to yield
correct decomposition: Suppose Dc is the matrix of sam-
pled columns and Lc its LR component. The following
lemma shows that the sufficient number of randomly sampled
columns to ensure correct decomposition of Dc is linear in
the coherency parameter even if Lc has the CS of L.

Lemma 3 Suppose the CS of L is a random r-dimensional
subspace, Lc has the same CS of L and the support set of S
follows the Bernoulli model with parameter ρ. In addition,
assume that the columns of Dc were sampled uniformly at
random. If m1 ≥ r

c4
µ

′
(logN1)

2 and ρ ≤ ρs , then

min
L̇c,Ṡc

λ‖Ṡc‖1 + ‖L̇c‖∗ subject to L̇c + Ṡc = Dc , (4)

yields the exact decomposition with probability at least 1 −
c1N

−3
1 , where µ

′
=max

(
c2 max(r,logN1)

r , 6µv, µv(c3 logN1)
2
)

and {ci}4i=1 are constant numbers.
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Fig. 2. Visualization of Algorithm 1. We run few cycles of the algorithm
and stop when the rank of the LR component does not change over T consec-
utive steps. One cycle of the algorithm starts from the point marked “I” and
proceeds as follows. I: Matrix Dw is decomposed and L̂w is the obtained
LR component of Dw . II: Algorithm 2 is applied to L̂w to select the infor-
mative columns of L̂w . L̂s

w is the matrix of columns selected from L̂w . III:
Matrix Dc is formed from the columns of D that correspond to the columns
of L̂s

w . 1: Matrix Dc is decomposed and L̂c is the obtained LR component
of Dc. 2: Algorithm 2 is applied to L̂T

c to select the informative rows of L̂c.
L̂s
c is the matrix of rows selected from L̂c. 3: Matrix Dw is formed as the

rows of D corresponding to the rows used to form L̂s
c .

Algorithm 1 Column/Row Subspace Pursuit Algorithm
1. Initialization
Form Dw ∈ RCr r̂×N2 by randomly choosing Cr r̂ rows of D. Initialize
k = 1 and set T equal to an integer greater than 1.
2. While k > 0

2.1 Sample the most informative columns
2.1.1 Obtain L̂w via (2) as the LR component of Dw .
2.1.2 Apply Algorithm 2 to L̂w with C = Cr .
2.1.3 Form the matrix Dc from the columns of D corresponding to the sam-
pled columns of L̂w .
2.2 Sample the most informative rows
2.2.1 Obtain L̂c via (2) as the LR component of Dc.
2.2.2 Apply Algorithm 2 to L̂T

c with C = Cr .
2.2.3 Form the matrix Dw from the rows of D corresponding to the sampled
rows of L̂c.
2.3 If the dimension of the RS of L̂w does not increase in T consecutive
iterations, set k = 0 to stop the algorithm.
2. End While
Output: The matrices L̂c and L̂w .

3. COLUMN-ROW SUBSPACE PURSUIT SAMPLING
ALGORITHM

In this algorithm, we address the worst case scenario in
which the distribution of both columns and rows of L can be
highly non-uniform. Thus, a small set of randomly sampled
columns/rows does not span the CS/RS with high probability.
It is assumed that we know an upper bound r̂ on the rank
of L. Such knowledge is often available as side information
depending on the particular application. For instance, facial
images under varying illumination and facial expressions are
known to lie on a special low-dimensional subspace [19]. In

the proposed method, we define Dc and Dw as the matrices
of sampled columns and sampled rows, respectively. The
matrices (Lc,Sc) and (Lw,Sw) are the LR and sparse com-
ponents of Dc and Dw, respectively. In addition, matrices L̂c
and L̂w are the obtained LR component of Dc and Dw via
(2), respectively.

Before presenting the proposed algorithm (Algorithm 1),
we explain Algorithm 2, which is used as a subroutine in the
proposed algorithm. Algorithm 2 is a column sampling algo-
rithm which locates the informative columns of a given LR
rank matrix. In each iteration, the algorithm finds a set of
the columns of the given matrix that span its CS. Since it re-
peats the sampling process C times (without replacement), in
the end Cr non-repeated columns are sampled. C is chosen
sufficiently large so that the sampled columns form a LR ma-
trix. We refer the reader to [20, 21] and references therein for
further information on efficient methods for column sampling
from LR matrices.

The table of Algorithm 1, Fig. 2 and its caption provide
the details of the proposed sampling approach and the defi-
nitions of the used matrices. We start the cycle from the po-
sition marked “I” in Fig. 2 with Dw formed using Cr r̂ ran-
domly sampled rows. The constantCr is chosen large enough
such that Lw is a LR matrix. For ease of exposition, assume
that L̂w = Lw and L̂c = Lc, i.e., Dw and Dc are decom-
posed correctly. The matrix L̂sw is the informative columns
of L̂w. Thus, the rank of L̂sw is equal to the rank of L̂w.
Since L̂w = Lw, L̂sw is a subset of the rows of Lc. If the
rows of L exhibit a clustering structure (or their distribution
is not uniform), it is likely that rank(L̂sw) < rank(Lc). Thus,
rank(Lw) < rank(Lc). We continue one cycle of the algo-
rithm by going through steps 1, 2 and 3 of Fig. 2 to update
Dw. Using a similar argument, we see that the rank of an up-
dated Lw will be greater than the rank of Lc. Thus, if we run
more cycles of the algorithm – each time updating Dw and
Dc – the rank of Lw and Lc will increase. As detailed in the
table of Algorithm 1, we stop if the dimension of the span of
the obtained LR component does not change in T consecutive
iterations. While there is no guarantee that the rank of Lw will
converge to r (it can converge to a value smaller than r), our
investigations have shown that Algorithm 1 performs quite
well and the RS of Lw converges to the RS of L in few steps.
In addition, the proposed method can be used independently
as a robust column/feature sampling algorithm [22, 23].

3.1. Recovering the LR matrix

Once the sampling algorithm converges, L can be easily re-
covered using the LR components of the matrices Dc and
Dw. Define H ∈ Rm2×m1 as the matrix formed from the in-
tersection of L̂w and L̂c, where m1 is the number of columns
of L̂c and m2 the number of rows of L̂w. In addition, de-
fine Uh ∈ Rm2×ṙ, Vh ∈ Rm1×ṙ, Σh ∈ Rṙ×ṙ as the matrix
of left singular vectors, the matrix of right singular vectors,
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and the diagonal matrix of singular values of H, respectively,
where ṙ is its rank. We make use of the generalized Nyström
method to form the LR matrix as follows [24]

L̂ = L̂cVhΣ
+
hUT

h L̂w . (5)

In addition, The sparse component can be obtained as Ŝ =
D− L̂.

Remark 1 The number of rows/columns of Dw/Dc is of or-
der O(r). Thus, the complexity of Algorithm 1 is roughly
O(max(N1, N2)r

2T1T2), where T1 is the number of itera-
tions to decompose Dw/Dc and T2 the number of iterations
of Algorithm 1. According to our investigations, few itera-
tions (less than 4) of Algorithm 1 are usually sufficient. Thus,
the overall complexity is of order O(max(N1, N2)r

2T1).

Algorithm 2 Informative Column Sampling from LR Matri-
ces
Input: Matrix A.
1. Initialize
1.1 The parameter C is chosen as an integer greater than or equal to one. The
algorithm finds C sets of columns, where each set spans the CS of A.
1.2 Set I = ∅ as the index set of the sampled columns and set B = A.
2. Repeat C Times
2.1 Apply the column sampling algorithm presented in [21] to B to sample
r̂ columns.
2.2 Store the indices of the sampled columns in set I and set to zero the
columns of B with indices in I.
Output: The set I contains the indices of the selected columns.

4. NUMERICAL SIMULATIONS

4.1. Efficient column/row sampling

In this experiment, Algorithm 1 is compared to the random-
ized decomposition algorithm in [12] which utilizes uniform
column/row sampling. It is shown that the proposed sam-
pling strategy can effectively reduce the required number of
sampled columns/rows, and makes the proposed method re-
markably robust to structures in data. In this experiment the
matrix L follows Assumption 1, D ∈ R2000×4200, r = 60,
{ni}n/2i=1 = 5r

n , and {ni}ni=n/2+1 = 130r
n . The sparse ma-

trix S follows the Bernoulli model and each element of S is
non-zero with probability 0.02. Also, in this experiment the
rows of L do not exhibit a clustering structure. In addition,
the distribution of the rows of L is random within the RS of L
(since U spans a random subspace). Thus, if we initiate Dw

with Cr r̂ randomly sampled rows where Cr ≥ 2, the rank
of Lw is equal to r. Accordingly, in this experiment we run
Algorithm 1 with only one iteration. We initiate matrix Dw

with 300 randomly sampled rows.
We evaluate the performance of the algorithm for different

values of n, i.e., different number of clusters. Fig. 3 shows

Fig. 3. Performance of the proposed approach and the randomized algo-
rithm in [12]. A value 1 indicates correct decomposition and a value 0 indi-
cates incorrect decomposition.

the performance of the proposed approach and the approach
in [12] (which uses uniform random sampling) for different
values of m1 and m2. For each value of m1 = m2, we
compute the error in LR matrix recovery ‖L−L̂‖F‖L‖F averaged
over 10 independent runs, and conclude that the algorithm can
yield correct decomposition if the average error is less than
0.01. In Fig. 3, the values 0, 1 designate incorrect and correct
decomposition, respectively. It can be seen that the presented
approach requires a significantly smaller number of samples
to yield correct decomposition. This is due to the fact that
the randomized algorithm [12] samples both the columns and
rows uniformly at random and independently. By contrast,
we use L̂w to find the most informative columns to form Dc,
and also leverage the information embedded in the CS to find
the informative rows to update Dw. One can see that when
n = 60, the algorithm in [12] cannot yield correct decompo-
sition even when m1 = m2 = 1800.

4.2. Alternating algorithm for column sampling

In this section, we investigate the performance of Algorithm
1 for column sampling. The rank of the selected columns is
shown to converge to the rank of L even when both the rows
and columns of L exhibit a highly structured distribution. To
generate L we first generate a matrix G as follows:
Matrix G follows the clustering structure of Assumption 1
withN1 = 2000, r = 100, {ni}n/2i=1 = 5r

n , and {ni}ni=n/2+1 =
200r
n . Then, we construct the matrix Ug from the first r right

singular vectors of G. We then generate G in a similar way
and set Vg equal to the first r right singular vectors of G. Let
the matrix L = UgV

T
g . Note that in this simulation we con-

sider a very challenging scenario in which both the columns
and rows of L are highly structured and coherent. The right
plot of Fig. 1 shows the rank of the LR component of Dc

after each iteration. The algorithm is shown to converge to
the rank of L in less than 3 iterations even for n = 100 clus-
ters. For all values of n, i.e., n ∈ {2, 50, 60}, the data is a
10250× 10250 matrix.

6422



5. REFERENCES

[1] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S.
Willsky, “Rank-sparsity incoherence for matrix decom-
position,” SIAM Journal on Optimization, vol. 21, no. 2,
pp. 572–596, 2011.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust
principal component analysis?” Journal of the ACM
(JACM), vol. 58, no. 3, p. 11, 2011.

[3] T. Zhou and D. Tao, “Godec: Randomized low-rank &
sparse matrix decomposition in noisy case,” in Interna-
tional Conference on Machine Learning (ICML), 2011.

[4] J. Wright, A. Ganesh, K. Min, and Y. Ma, “Compres-
sive principal component pursuit,” Information and In-
ference, vol. 2, no. 1, pp. 32–68, 2013.

[5] Q. Ke and T. Kanade, “Robust L1 norm factorization
in the presence of outliers and missing data by alterna-
tive convex programming,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), vol. 1, 2005, pp. 739–746.

[6] S. Minaee and Y. Wang, “Screen content image segmen-
tation using least absolute deviation fitting,” in IEEE
International Conference on Image Processing (ICIP),
2015, pp. 3295–3299.

[7] Z. Zhou, X. Li, J. Wright, E. Candès, and Y. Ma, “Sta-
ble principal component pursuit,” in IEEE International
Symposium on Information Theory Proceedings (ISIT),
2010, pp. 1518–1522.

[8] X. Yuan and J. Yang, “Sparse and low-rank matrix de-
composition via alternating direction methods,” Pacific
Journal of Optimization, 2009.

[9] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange
multiplier method for exact recovery of corrupted low-
rank matrices,” arXiv preprint arXiv:1009.5055, 2010.

[10] L. Mackey, A. Talwalkar, and M. I. Jordan, “Dis-
tributed matrix completion and robust factorization,”
arXiv preprint arXiv:1107.0789, 2011.

[11] M. Rahmani and G. Atia, “Randomized robust subspace
recovery and outlier detection for high dimensional data
matrices,” To Appear in the IEEE Transactions on Sig-
nal Processing, 2017, https://arxiv.org/pdf/1505.05901.
pdf.

[12] L. W. Mackey, M. I. Jordan, and A. Talwalkar, “Divide-
and-conquer matrix factorization,” in Advances in Neu-
ral Information Processing Systems, 2011, pp. 1134–
1142.

[13] R. Liu, Z. Lin, S. Wei, and Z. Su, “Solving principal
component pursuit in linear time via l 1 filtering,” arXiv
preprint arXiv:1108.5359, 2011.

[14] M. Rahmani and G. Atia, “High dimensional low rank
plus sparse matrix decomposition,” To Appear in the
IEEE Transactions on Signal Processing, 2017, https:
//arxiv.org/pdf/1502.00182.pdf.

[15] X. Li and J. Haupt, “Identifying outliers in large ma-
trices via randomized adaptive compressive sampling,”
IEEE Transactions on Signal Processing, vol. 63, no. 7,
pp. 1792–1807, 2015.

[16] E. Candès and J. Romberg, “Sparsity and incoherence in
compressive sampling,” Inverse problems, vol. 23, no. 3,
p. 969, 2007.

[17] E. J. Candès and B. Recht, “Exact matrix completion via
convex optimization,” Foundations of Computational
mathematics, vol. 9, no. 6, pp. 717–772, 2009.

[18] M. Rahmani and G. Atia, “Innovation pursuit: A
new approach to subspace clustering,” arXiv preprint
arXiv:1512.00907, 2015.

[19] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and
Y. Ma, “Robust face recognition via sparse representa-
tion,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[20] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Find-
ing structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions,”
SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[21] A. Deshpande and L. Rademacher, “Efficient volume
sampling for row/column subset selection,” in 51st An-
nual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 2010, pp. 329–338.

[22] M. Rahmani and G. Atia, “Robust and scalable col-
umn/row sampling from corrupted big data,” arXiv
preprint arXiv:1611.05977, 2016.

[23] A. Rahimpour, A. Taalimi, and H. Qi, “Feature encoding
in band-limited distributed surveillance systems,” arXiv
preprint arXiv:1612.06423, 2016.

[24] S. Kumar, M. Mohri, and A. Talwalkar, “On sampling-
based approximate spectral decomposition,” in Proceed-
ings of the 26th Annual International Conference on
Machine Learning. ACM, 2009, pp. 553–560.

6423


