
PRIVACY�PRESERVING�ENCRYPTED�PHONETIC�SEARCH�OF�SPEECH�DATA�
 

Cornelius Glackin1*, Gerard Chollet1, Nazim Dugan1, Nigel Cannings1, Julie Wall2,
Shahzaib Tahir3, Indranil Ghosh Ray3, and Muttukrishnan Rajarajan3

 
1 Intelligent Voice Ltd., London, UK 2 University of East London, London, UK 3 City University London, London, UK 

Email: neil.glackin@intelligentvoice.com*

 
 

ABSTRACT�

This paper presents a strategy for enabling speech recognition 
to be performed in the cloud whilst preserving the privacy of 
users. The approach advocates a demarcation of 
responsibilities between the client and server-side 
components for performing the speech recognition task. On 
the client-side resides the acoustic model, which symbolically 
encodes the audio and encrypts the data before uploading to 
the server. The server-side then employs searchable 
encryption to enable the phonetic search of the speech 
content. Some preliminary results for speech encoding and 
searchable encryption are presented. 

Index Terms Speech recognition, privacy, searchable 
encryption, GPGPU computing 

1. INTRODUCTION�
�

In many activities involving big data, cloud computing offers 
a common distributed infrastructure for the storage of large 
amounts of data in a scalable, efficient, and low cost way. For 
sensitive data, there is the possibility to use encryption for the 
secure storage of data in the cloud. However, whilst we have 
become increasingly good at encrypting data at rest, in order 
to process the data on the cloud we first need to decrypt it, 
which in turn exclu
resources to process sensitive data, unless it can be done in a 
secure way. 

Speech contains biometric and other information which 
should remain private and therefore inaccessible to the cloud 
provider. Cloud users want to hide sensitive data such as 
speech, from cloud providers; similarly, companies using 
cloud services want to protect their intellectual property from 
cloud providers and users. Hence the need for strategies for 
processing data securely in the cloud becomes increasingly 
more important. 

Speech is not reproducible in the sense that no speaker is 
capable of making the same utterance the same way twice, 
there are always small acoustic differences between 
utterances that have the same base transcription, and this is a 
particular challenge of performing encrypted speech 
recognition. By reformulating the typical speech recognition 

task in such a way as to facilitate cloud computation, for 
example by reducing speech recognition to a search 
procedure [1], we demonstrate how secure speech processing 
in the cloud can be realized. 

 
2. PROPOSED�ARCHITECTURE�

�
Our proposed solution involves the compression of speech 
containing biometric identifiers to a symbolic representation 
[1] then on the other 
hand to use searchable symmetric encryption [2] to enable the 
finding of strings of symbols (e.g. phones) in an encrypted 
speech transcription. Encrypted string matching will then be 
performed to realize the language modelling component of 
the speech recognition system [3]. Fig. 1 illustrates the 
concept and the demarcation of responsibilities between the 
client and cloud server. 

 

�
Fig.�1.�The�client�and�cloud�server�concept�and�division�
of�responsibilities�for�the�speech�processing�task�

 
Speech recognition is typically broken down into acoustic 

and language modelling tasks. The acoustic model converts 
raw speech wave forms into acoustic units such as phones. 
The language model incorporates natural language 
processing and Bayesian probability theory to infer the text 
transcription, given what is known of a particular language, 
and what words the sequences of phones likely correspond to. 
As can be seen from Fig. 1, in the proposed system, the 
acoustic model resides on the client-side and the language 
model resides on the server/cloud-side. 
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3.�PRIVACY�PRESERVING�SPEECH�ENCODING�
 

Traditionally, Automatic Speech Recognition (ASR) 
involves multiple successive layers of feature extraction to 
compress the amount of information processed from the raw 
audio so that the training of the acoustic model does not take 
an unreasonably long time. However, in recent years with 
increases in computational speed, adoption of parallel 
computation with GPGPUs, and advances in neural networks, 
many researchers are replacing traditional ASR algorithms 
with data-driven approaches that simply take the audio data 
in its frequency form (e.g. spectrogram) and process it with a 
Deep Neural Network (DNN), or more appropriately (since 
speech is temporal) with a Recurrent Neural Network (RNN) 
that can be trained quickly with GPGPUs. The RNN then 
converts the spectrogram directly to phonetic symbols and in 
some cases directly to text [4]. 

The problem with many of these approaches from the 
encryption point of view is that they typically combine the 
acoustic model and the language model with one neural 
network. This involves aligning the acoustic data (containing 
sensitive biometrics) at various stages of the network training 
with the text transcription with Expectation Maximization, 
Viterbi Search or Connectionist Temporal Classification [5]. 
In our approach, we propose that a higher level of privacy 
preservation can be attained by separating the acoustic and 
language model components between the client and server-
sides of the system. In the acoustic model, we use 
spectrograms as input and phonemes as output classes for 
training with a Convolutional Neural Network (CNN). Being 
able to train a system to identify time-frequency intervals in 
acoustic data and relate it to acoustic units such as phonemes 
requires extremely accurate labelling of acoustic data, and 
this is afforded by the well-known TIMIT speech corpus [6]. 

 
3.3.�Preliminary�Experiments�
 
We use an implementation of the GoogLeNet architecture [7, 
8] with Stochastic Gradient Descent (SGD) for training with 
the phonetic transcription within the TIMIT corpus. Once the 
CNN acoustic model is trained, it is then uploaded to the 
client-side and used to perform inferencing, encoding the 
audio as phonetic symbols. The audio is first converted to 
Short-Term Fourier Transform (STFT) spectrograms and 
passed to the trained CNN which classifies the sliding 
windows operating over the spectrogram into phonetic 
symbols. Fig. 2 illustrates the operation of this convolutional 
speech encoder, where the sliding windows operating over 
the spectrogram (each one is 256×256 greyscale pixels) are 
classified by the CNN into phoneme classes.  

top-1 prediction for loss3 (the last network 
output) reports the highest accuracy which is 71.65% for 
classification of the 61 phones (which increases to 77.44% 
after standard rescoring to the more common 39 phone set). 
Hence, the performance of the CNN is competitive with the 

82.3% state of the art [9]. The top-5 accuracy of the CNN is 
96.27%, which means that the correct phone was listed in the 
top five output classifications of the network output, this is 
interesting because each 256 ms spectrogram window 
typically contains 4 to 5 phones on average, and preliminary 
tests confirmed that in the majority of cases the other phones 
were indeed correctly being identified. This hints that future 
improvements in accuracy may be found by modification of 
the window size. 
 

 
�
Fig.�2.�Client­side�convolutional�speech�encoder�

 
The phonetic transcriptions from the CNN are then encrypted 
with AES and uploaded to the cloud. Hence as well as storing 
encrypted audio the cloud also stores a symbolic 
representation of the encrypted speech data.  
 
4.�ENCRYPTED�PHONETIC�SEARCH�
 
We make some assumptions regarding the potential places of 
attacks that we need to address for the development of the 
security of the speech processing system. The server is 

trusted 
actively try and break the encryption but will monitor the 
traffic and infer the content of the audio if it can. The 
communication channels will be assumed to be under threat 
from an adversary. The communication channels will be used 
to transmit AES encrypted symbolic speech data, and return 
AES encrypted search results. This is the basis by which we 
will design suitable encryption.  
 
4.1.�Deterministic�Encryption 
 
Deterministic encryption always encrypts the same message 
to the same cipher text. The property preserved by 
deterministic encryption is equality, i.e. for any given two 
encryptions one can test if the underlying messages are equal 
by checking the given cipher texts. Due to this equality 
property, the encrypted database leaks a large amount of data 
even before the client searches. This means that if the server 
sees two or more equal cipher texts in the encrypted database, 
it knows that the corresponding encrypted documents contain 
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a keyword in common. In addition, the server learns the 
frequency with which keywords appear which makes the 
encrypted database vulnerable to frequency analysis. Another 
issue is that since tokens are deterministic encryptions of the 
search terms, the server will always know whether the client 
is repeating a search or not. A third issue occurs when the 
deterministic encryption scheme is based on a public-key 
scheme. In this case, all the deterministic encryptions (both 
in the encrypted database and in the tokens) are encrypted 

The server can then mount a dictionary attack on the 
encrypted database by encrypting a list of possible keywords 
and comparing them to the ones found in the encrypted 
database and in the tokens. If it finds a match, then it knows 
the keyword. Hence the solution based on deterministic 
encryption supports fast search on encrypted data. 

Searchable encryption based on identity based 
encryption (IBE) is secure in the traditional cipher text 
indistinguishability sense. The anonymity requirement 
informally states that cipher texts leak no information 
regarding the identity of the recipient, leading to the 
commonly desired keyword-privacy guarantees over cipher 
texts in searchable encryption. The standard notion of cipher 
text indistinguishability in IBE informally means that it is 
hard for computationally bounded adversaries to find two 
distinct keywords such that the trapdoors for the first 
keyword positively match the cipher texts of the second. 

 
4.2.�Ranked�Searchable�Encryption�(RSE) 

We will consider the client-server infrastructure by 
visualizing a scenario in which there are two parties, Alice 
(Client) and a cloud server. Alice intends to upload all her 
documents (encrypted speech files) D = {D1, D2 i} to 
the cloud server to enable remote access. The cloud server 
performs the searching of the relevant documents on behalf 
of Alice. To prevent theft of any of the information Alice 
decides to encrypt all the documents. Once the documents are 
encrypted and outsourced she is challenged with the problem 
of searching on the encrypted documents. Whenever Alice 
decides to view a particular file she has to download all the 
documents from the cloud server and after decrypting all of 
them she can get hold of her required set of files. This creates 
unnecessary network traffic and post processing overhead. 
Alice decides to outsource the documents in such a way that 
she would only have to download the relevant and desired 
documents while keeping the security and privacy of the 
outsourced files intact. This requires a scheme that facilitates 
performing textual searches over encrypted data. 

Searching over encrypted documents is performed in 
three phases (Setup, Searching and Outcome). The first phase 
i.e. the Setup Phase, comprises the three steps Keyword 
Identification, Client Index Generation and Server Index 
Generation. In the first step Alice generates an exhaustive set 
of unique keywords W = {W1, W2 WN} from the set of 
documents D to be outsourced. Next Alice builds a client-side 

index table Ic. The Ic is stored with Alice and is never revealed 
to the cloud server. In the final step, Alice generates a secure 
ranked server-side index Is and outsources it to the cloud 
server along with the encrypted set of documents D. This 
involves the relevant frequencies of the keywords to be 
calculated and inserted into the index table. 

 
In the Searching Phase, Alice generates a Trapdoor Ti for the 
particular keyword Wi she is willing to search. Ti is then 
transmitted to the cloud server to facilitate the search. In the 
Outcome Phase the cloud server returns the encrypted set of 
desired files to Alice in the ranked order. It should be noted 
here that the trapdoor is probabilistic. The trapdoor 
generation mechanism helps to resist distinguishability 
attacks i.e. each time the server will definitely have to 
perform the entire search as every time we generate unique 
trapdoors for the same keywords being searched again. Fig. 3 
shows the flow of events of the proposed RSE scheme where 
a client is interacting with a cloud server. It can be seen that 
all the tasks are performed by the client, whereas, the 
searching is done at the cloud server side. 

 
�
Fig.�4.�Server­side�index�table�generation�
 

Pre-processing is done on the client side in three major 
steps, namely frequency computation, client-side index 
generation and server-side index generation. With frequency 

 
�
Fig.�3.�RSE�Flow�of�Events�
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computation, the scheme computes the frequency of the 
words (phonetic symbols) appearing in each of the selected 
files. The next task is to generate the client-side index. The 
client side index table is a collection of all key words each 
assigned with a unique integer other than 0 and 1. If the total 
number of N

p p > N. All integers that 
p-1}. 

The client-side index table is simply just a key for the 
keywords, which in our case are phonetic symbols. The 
server-side index table keeps track of the distribution of the 
keywords throughout the documents. The server-side index 
table is a frequency table with three modifications: Firstly, 
the phonetic symbols are replaced by the integers which are 
the multiplicative inverse of their corresponding client-side 
index computed modulo prime p. For example, the client-side 
index of the symbol  is 2. The multiplicative inverse of 2 
in modulo 228199 is 114100. Hence in the Server-side index 
table, 
file names in the frequency table are replaced by the 
encrypted file names. For example, word.doc is replaced by 
AES (word.doc) as shown in the figure. Lastly, the 
frequencies are replaced by relevant scores which are 
computed using the following formula: 

 (1) 

As is illustrated by Fig. 4, to search for a keyword, say 
E = (Decimal (AES 

( oor K = (Decimal (AES 
) mod 228199. Note that 3 is the client-side index of 

(K, E), K will be multiplied modulo 228199 with the integers 
occurring in the first row of server-side index table one by 
one unless product matches K. For example, since the 
multiplicative inverse of 3 in modulo 228199 is 152133, (K × 

E. Now the entries of the column corresponding to the integer 
152133 are to be checked. The higher the score, the more 
relevant the corresponding file is with respect to the search. 
If the number of files in which the search is be performed is, 
say, 2, then the top two files according to the top two relevant 
scores for the keywo
corresponding encrypted files are new.docx and Latest.doc, 
these encrypted files are then returned to the client.  

 
4.2.�Searching�for�Sequences�of�Phones�
 
To improve the usability of the scheme we have recently 
extended it to enable the searching of strings of phonetic 
symbols. In effect a simple lexicon can reside on the client-
side, and then the end-user can search using words, the 
lexicon can transform the search into strings of phones and 
then the encrypted search can be performed. This necessitates 
a slight modification to the server-side index table. Basically, 
the relevance score (Eq. 1) is replaced with a string of integers 

indicative of a hash chain. To implement the hash chain 
functionality, the server side index table has the various 
phonetic symbols coded into the column entries of the table. 
Take a randomly generated lambda-bit integer, say r, then the 
first column in the server side index table will be r, the next 
column will be H(r), the third column will be H2(r) and in 
general the column corresponding to the i-th symbol will be 
Hi-1(r), where H() is a cryptographically strong keyed hash 
function (SHA-1 or SHA-2). 

To search for the encrypted audio on the cloud 
containing a particular word
the lexicon that says we need to search the encoded speech 
repository Then all entries 

. 
Similarly, entries corresponding to other keywords are 

for each 
symbol  the client will compute: 

 
 = ( ( (  )) + c +  

  (2) 
 =  

where  is the client side index for the phonetic symbol under 
question. The search query is of the form: ({ }, 
{ }, { }, { }). Using 
the RSE searchable encryption described previously, the 

 It should be 
noted, that when we use the masking function within our 
index table, we disturb the relevance scores in such a way that 
the frequency analysis attacks cannot be launched, while 
correct search results can still be obtained. 
 

5.�CONCLUSIONS�
 
We have presented an outline of encrypted phonetic search of 
audio stored on the cloud. Whilst the complete system is still 
in development the rationale for how the system works has 
been presented along with specification and preliminary 
operation of many of the core modules. The rationale 
advocates that audio data is uploaded to the cloud and 
remains encrypted once it leaves the client-side. On the 
client-side the audio data is additionally encoded into 
symbols by a novel CNN based acoustic model. The encoded 
speech (phonetic symbolic strings) are then encrypted with 
AES and uploaded to the cloud. RSE provides the capability 
to perform phonetic searching of the encoded audio securely 
in the cloud realizing the speech recognition task. The 
inherent probabilistic trapdoor security that RSE employs 
preserves the privacy of searches. 
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