
PRIVACY�PRESERVING�ENCRYPTED�PHONETIC�SEARCH�OF�SPEECH�DATA�

Cornelius Glackin1*, Gerard Chollet1, Nazim Dugan1, Nigel Cannings1, Julie Wall2,
Shahzaib Tahir3, Indranil Ghosh Ray3, and Muttukrishnan Rajarajan3

1 Intelligent Voice Ltd., London, UK 2 University of East London, London, UK 3 City University London, London, UK

Email: neil.glackin@intelligentvoice.com*

ABSTRACT�

This paper presents a strategy for enabling speech recognition
to be performed in the cloud whilst preserving the privacy of
users. The approach advocates a demarcation of
responsibilities between the client and server-side
components for performing the speech recognition task. On
the client-side resides the acoustic model, which symbolically
encodes the audio and encrypts the data before uploading to
the server. The server-side then employs searchable
encryption to enable the phonetic search of the speech
content. Some preliminary results for speech encoding and
searchable encryption are presented.

Index Terms Speech recognition, privacy, searchable
encryption, GPGPU computing

1. INTRODUCTION�
�

In many activities involving big data, cloud computing offers
a common distributed infrastructure for the storage of large
amounts of data in a scalable, efficient, and low cost way. For
sensitive data, there is the possibility to use encryption for the
secure storage of data in the cloud. However, whilst we have
become increasingly good at encrypting data at rest, in order
to process the data on the cloud we first need to decrypt it,
which in turn exclu
resources to process sensitive data, unless it can be done in a
secure way.

Speech contains biometric and other information which
should remain private and therefore inaccessible to the cloud
provider. Cloud users want to hide sensitive data such as
speech, from cloud providers; similarly, companies using
cloud services want to protect their intellectual property from
cloud providers and users. Hence the need for strategies for
processing data securely in the cloud becomes increasingly
more important.

Speech is not reproducible in the sense that no speaker is
capable of making the same utterance the same way twice,
there are always small acoustic differences between
utterances that have the same base transcription, and this is a
particular challenge of performing encrypted speech
recognition. By reformulating the typical speech recognition

task in such a way as to facilitate cloud computation, for
example by reducing speech recognition to a search
procedure [1], we demonstrate how secure speech processing
in the cloud can be realized.

2. PROPOSED�ARCHITECTURE�

�
Our proposed solution involves the compression of speech
containing biometric identifiers to a symbolic representation
[1] then on the other
hand to use searchable symmetric encryption [2] to enable the
finding of strings of symbols (e.g. phones) in an encrypted
speech transcription. Encrypted string matching will then be
performed to realize the language modelling component of
the speech recognition system [3]. Fig. 1 illustrates the
concept and the demarcation of responsibilities between the
client and cloud server.

�
Fig.�1.�The�client�and�cloud�server�concept�and�division�
of�responsibilities�for�the�speech�processing�task�

Speech recognition is typically broken down into acoustic

and language modelling tasks. The acoustic model converts
raw speech wave forms into acoustic units such as phones.
The language model incorporates natural language
processing and Bayesian probability theory to infer the text
transcription, given what is known of a particular language,
and what words the sequences of phones likely correspond to.
As can be seen from Fig. 1, in the proposed system, the
acoustic model resides on the client-side and the language
model resides on the server/cloud-side.

6414978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

3.�PRIVACY�PRESERVING�SPEECH�ENCODING�

Traditionally, Automatic Speech Recognition (ASR)
involves multiple successive layers of feature extraction to
compress the amount of information processed from the raw
audio so that the training of the acoustic model does not take
an unreasonably long time. However, in recent years with
increases in computational speed, adoption of parallel
computation with GPGPUs, and advances in neural networks,
many researchers are replacing traditional ASR algorithms
with data-driven approaches that simply take the audio data
in its frequency form (e.g. spectrogram) and process it with a
Deep Neural Network (DNN), or more appropriately (since
speech is temporal) with a Recurrent Neural Network (RNN)
that can be trained quickly with GPGPUs. The RNN then
converts the spectrogram directly to phonetic symbols and in
some cases directly to text [4].

The problem with many of these approaches from the
encryption point of view is that they typically combine the
acoustic model and the language model with one neural
network. This involves aligning the acoustic data (containing
sensitive biometrics) at various stages of the network training
with the text transcription with Expectation Maximization,
Viterbi Search or Connectionist Temporal Classification [5].
In our approach, we propose that a higher level of privacy
preservation can be attained by separating the acoustic and
language model components between the client and server-
sides of the system. In the acoustic model, we use
spectrograms as input and phonemes as output classes for
training with a Convolutional Neural Network (CNN). Being
able to train a system to identify time-frequency intervals in
acoustic data and relate it to acoustic units such as phonemes
requires extremely accurate labelling of acoustic data, and
this is afforded by the well-known TIMIT speech corpus [6].

3.3.�Preliminary�Experiments�

We use an implementation of the GoogLeNet architecture [7,
8] with Stochastic Gradient Descent (SGD) for training with
the phonetic transcription within the TIMIT corpus. Once the
CNN acoustic model is trained, it is then uploaded to the
client-side and used to perform inferencing, encoding the
audio as phonetic symbols. The audio is first converted to
Short-Term Fourier Transform (STFT) spectrograms and
passed to the trained CNN which classifies the sliding
windows operating over the spectrogram into phonetic
symbols. Fig. 2 illustrates the operation of this convolutional
speech encoder, where the sliding windows operating over
the spectrogram (each one is 256×256 greyscale pixels) are
classified by the CNN into phoneme classes.

top-1 prediction for loss3 (the last network
output) reports the highest accuracy which is 71.65% for
classification of the 61 phones (which increases to 77.44%
after standard rescoring to the more common 39 phone set).
Hence, the performance of the CNN is competitive with the

82.3% state of the art [9]. The top-5 accuracy of the CNN is
96.27%, which means that the correct phone was listed in the
top five output classifications of the network output, this is
interesting because each 256 ms spectrogram window
typically contains 4 to 5 phones on average, and preliminary
tests confirmed that in the majority of cases the other phones
were indeed correctly being identified. This hints that future
improvements in accuracy may be found by modification of
the window size.

�
Fig.�2.�Client­side�convolutional�speech�encoder�

The phonetic transcriptions from the CNN are then encrypted
with AES and uploaded to the cloud. Hence as well as storing
encrypted audio the cloud also stores a symbolic
representation of the encrypted speech data.

4.�ENCRYPTED�PHONETIC�SEARCH�

We make some assumptions regarding the potential places of
attacks that we need to address for the development of the
security of the speech processing system. The server is

trusted
actively try and break the encryption but will monitor the
traffic and infer the content of the audio if it can. The
communication channels will be assumed to be under threat
from an adversary. The communication channels will be used
to transmit AES encrypted symbolic speech data, and return
AES encrypted search results. This is the basis by which we
will design suitable encryption.

4.1.�Deterministic�Encryption

Deterministic encryption always encrypts the same message
to the same cipher text. The property preserved by
deterministic encryption is equality, i.e. for any given two
encryptions one can test if the underlying messages are equal
by checking the given cipher texts. Due to this equality
property, the encrypted database leaks a large amount of data
even before the client searches. This means that if the server
sees two or more equal cipher texts in the encrypted database,
it knows that the corresponding encrypted documents contain

6415

a keyword in common. In addition, the server learns the
frequency with which keywords appear which makes the
encrypted database vulnerable to frequency analysis. Another
issue is that since tokens are deterministic encryptions of the
search terms, the server will always know whether the client
is repeating a search or not. A third issue occurs when the
deterministic encryption scheme is based on a public-key
scheme. In this case, all the deterministic encryptions (both
in the encrypted database and in the tokens) are encrypted

The server can then mount a dictionary attack on the
encrypted database by encrypting a list of possible keywords
and comparing them to the ones found in the encrypted
database and in the tokens. If it finds a match, then it knows
the keyword. Hence the solution based on deterministic
encryption supports fast search on encrypted data.

Searchable encryption based on identity based
encryption (IBE) is secure in the traditional cipher text
indistinguishability sense. The anonymity requirement
informally states that cipher texts leak no information
regarding the identity of the recipient, leading to the
commonly desired keyword-privacy guarantees over cipher
texts in searchable encryption. The standard notion of cipher
text indistinguishability in IBE informally means that it is
hard for computationally bounded adversaries to find two
distinct keywords such that the trapdoors for the first
keyword positively match the cipher texts of the second.

4.2.�Ranked�Searchable�Encryption�(RSE)

We will consider the client-server infrastructure by
visualizing a scenario in which there are two parties, Alice
(Client) and a cloud server. Alice intends to upload all her
documents (encrypted speech files) D = {D1, D2 i} to
the cloud server to enable remote access. The cloud server
performs the searching of the relevant documents on behalf
of Alice. To prevent theft of any of the information Alice
decides to encrypt all the documents. Once the documents are
encrypted and outsourced she is challenged with the problem
of searching on the encrypted documents. Whenever Alice
decides to view a particular file she has to download all the
documents from the cloud server and after decrypting all of
them she can get hold of her required set of files. This creates
unnecessary network traffic and post processing overhead.
Alice decides to outsource the documents in such a way that
she would only have to download the relevant and desired
documents while keeping the security and privacy of the
outsourced files intact. This requires a scheme that facilitates
performing textual searches over encrypted data.

Searching over encrypted documents is performed in
three phases (Setup, Searching and Outcome). The first phase
i.e. the Setup Phase, comprises the three steps Keyword
Identification, Client Index Generation and Server Index
Generation. In the first step Alice generates an exhaustive set
of unique keywords W = {W1, W2 WN} from the set of
documents D to be outsourced. Next Alice builds a client-side

index table Ic. The Ic is stored with Alice and is never revealed
to the cloud server. In the final step, Alice generates a secure
ranked server-side index Is and outsources it to the cloud
server along with the encrypted set of documents D. This
involves the relevant frequencies of the keywords to be
calculated and inserted into the index table.

In the Searching Phase, Alice generates a Trapdoor Ti for the
particular keyword Wi she is willing to search. Ti is then
transmitted to the cloud server to facilitate the search. In the
Outcome Phase the cloud server returns the encrypted set of
desired files to Alice in the ranked order. It should be noted
here that the trapdoor is probabilistic. The trapdoor
generation mechanism helps to resist distinguishability
attacks i.e. each time the server will definitely have to
perform the entire search as every time we generate unique
trapdoors for the same keywords being searched again. Fig. 3
shows the flow of events of the proposed RSE scheme where
a client is interacting with a cloud server. It can be seen that
all the tasks are performed by the client, whereas, the
searching is done at the cloud server side.

�
Fig.�4.�Server­side�index�table�generation�

Pre-processing is done on the client side in three major
steps, namely frequency computation, client-side index
generation and server-side index generation. With frequency

�
Fig.�3.�RSE�Flow�of�Events�

6416

computation, the scheme computes the frequency of the
words (phonetic symbols) appearing in each of the selected
files. The next task is to generate the client-side index. The
client side index table is a collection of all key words each
assigned with a unique integer other than 0 and 1. If the total
number of N

p p > N. All integers that
p-1}.

The client-side index table is simply just a key for the
keywords, which in our case are phonetic symbols. The
server-side index table keeps track of the distribution of the
keywords throughout the documents. The server-side index
table is a frequency table with three modifications: Firstly,
the phonetic symbols are replaced by the integers which are
the multiplicative inverse of their corresponding client-side
index computed modulo prime p. For example, the client-side
index of the symbol is 2. The multiplicative inverse of 2
in modulo 228199 is 114100. Hence in the Server-side index
table,
file names in the frequency table are replaced by the
encrypted file names. For example, word.doc is replaced by
AES (word.doc) as shown in the figure. Lastly, the
frequencies are replaced by relevant scores which are
computed using the following formula:

 (1)

As is illustrated by Fig. 4, to search for a keyword, say
E = (Decimal (AES

(oor K = (Decimal (AES
) mod 228199. Note that 3 is the client-side index of

(K, E), K will be multiplied modulo 228199 with the integers
occurring in the first row of server-side index table one by
one unless product matches K. For example, since the
multiplicative inverse of 3 in modulo 228199 is 152133, (K ×

E. Now the entries of the column corresponding to the integer
152133 are to be checked. The higher the score, the more
relevant the corresponding file is with respect to the search.
If the number of files in which the search is be performed is,
say, 2, then the top two files according to the top two relevant
scores for the keywo
corresponding encrypted files are new.docx and Latest.doc,
these encrypted files are then returned to the client.

4.2.�Searching�for�Sequences�of�Phones�

To improve the usability of the scheme we have recently
extended it to enable the searching of strings of phonetic
symbols. In effect a simple lexicon can reside on the client-
side, and then the end-user can search using words, the
lexicon can transform the search into strings of phones and
then the encrypted search can be performed. This necessitates
a slight modification to the server-side index table. Basically,
the relevance score (Eq. 1) is replaced with a string of integers

indicative of a hash chain. To implement the hash chain
functionality, the server side index table has the various
phonetic symbols coded into the column entries of the table.
Take a randomly generated lambda-bit integer, say r, then the
first column in the server side index table will be r, the next
column will be H(r), the third column will be H2(r) and in
general the column corresponding to the i-th symbol will be
Hi-1(r), where H() is a cryptographically strong keyed hash
function (SHA-1 or SHA-2).

To search for the encrypted audio on the cloud
containing a particular word
the lexicon that says we need to search the encoded speech
repository Then all entries

.
Similarly, entries corresponding to other keywords are

for each
symbol the client will compute:

 = ((()) + c +

 (2)
 =

where is the client side index for the phonetic symbol under
question. The search query is of the form: ({ },
{ }, { }, { }). Using
the RSE searchable encryption described previously, the

 It should be
noted, that when we use the masking function within our
index table, we disturb the relevance scores in such a way that
the frequency analysis attacks cannot be launched, while
correct search results can still be obtained.

5.�CONCLUSIONS�

We have presented an outline of encrypted phonetic search of
audio stored on the cloud. Whilst the complete system is still
in development the rationale for how the system works has
been presented along with specification and preliminary
operation of many of the core modules. The rationale
advocates that audio data is uploaded to the cloud and
remains encrypted once it leaves the client-side. On the
client-side the audio data is additionally encoded into
symbols by a novel CNN based acoustic model. The encoded
speech (phonetic symbolic strings) are then encrypted with
AES and uploaded to the cloud. RSE provides the capability
to perform phonetic searching of the encoded audio securely
in the cloud realizing the speech recognition task. The
inherent probabilistic trapdoor security that RSE employs
preserves the privacy of searches.

ACKNOWLEDGEMENTS�
�

This research was supported by Innovate UK as part of

project (Project No.: 102506).

6417

REFERENCES�

[1
ALISP: A proposal for automatic language independent speech

K. Ponting (ed.), NATO ASI Series, 1999, 169, pp 375-388.

[2
enc
13th ACM Conf. Comput. Netw. Secur., 2006, pp. 79.

[3 -preserving
speech processing: cryptographic and string-match frameworks
show promise
62-74.

[4
up end-to-
2014.

[5 onnectionist
temporal classification: labelling unsegmented sequence data with

Learning, 2006, pp. 369-376.

[6

, J.S., Lamel, L.F., Fisher, W.M., et
al.: https://catalog.ldc.upenn.edu/LDC93S1

[7]
http://caffe.berkeleyvision.org/

[8

https://developer.nvidia.com/digits

[9] A. Graves, A. Mohamed and G. Hinton, "Speech recognition
with deep recurrent neural networks," IEEE Int Conf Acoust Speech
Signal Process (ICASSP), pp. 6645-6649, 2013.

6418

