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ABSTRACT

Household energy monitoring via smart-meters motivates the
problem of disaggregating the total energy usage signal into the com-
ponent energy usage and operating patterns of individual appliances.
While energy disaggregation enables useful analytics, it also raises
privacy concerns because sensitive household information may also
be revealed. Our goal is to preserve analytical utility while mitigat-
ing privacy concerns by processing the total energy usage signal. We
consider processing methods that attempt to remove the contribution
of a set of sensitive appliances from the total energy signal. We
show that while a simple model-based approach is effective against
an adversary making the same model assumptions, it is much less ef-
fective against a stronger adversary employing neural networks in an
inference attack. We also investigate the performance of employing
neural networks to estimate and remove the energy usage of sensitive
appliances. The experiments used the publicly available UK-DALE
dataset that was collected from actual households.

Index Terms— data privacy, energy disaggregation, factorial
hidden Markov model, neural networks, privacy-utility tradeoff

1. INTRODUCTION

Real-time home energy usage monitoring via smart-meters can en-
able useful analytics for the benefit of both households and power
utilities. However, it also raises privacy concerns because sensitive
information, such as behavior and occupancy patterns [1] or even
the content displayed on a television or computer screen [2], may
also be revealed. The general objective in the field of energy disag-
gregation, also known as non-intrusive (appliance) load monitoring
(NILM or NIALM), is to recover the energy usage patterns of indi-
vidual appliances from the total household energy usage signal. This
objective and the techniques used to achieve it are relevant to both
the potentially useful analytics and the privacy concerns.

There are various techniques for energy disaggregation, with the
data sampling frequency being a major factor determining suitable
approaches (see [3] for a recent survey). Exploiting high order har-
monics, such as in [4], requires sampling rates on the order of kilo-
hertz to capture these microscopic features. In an approach suitable
for the low sampling frequency regime, the Factorial Hidden Markov
Model (FHMM) [5] and several of its extensions were applied to en-
ergy disaggregation in [6]. Recently, several neural network archi-
tectures were successfully applied in [7] to automate feature extrac-
tion for energy disaggregation.

In this work, we examine how the total household energy usage
signal should be processed to conceal the usage patterns of a set of

sensitive appliances, while preserving the detection of the other ap-
pliances. The related approaches of [8] and [9] apply an HMM and
treat a similar problem as an optimization of a statistical privacy-
utility tradeoff (related to the general framework of [10]). In both of
these works, the utility objective is to minimize the distortion with
respect to the total household energy signal. However, we argue
that the objective of removing the contribution of the sensitive appli-
ance’s energy usage from the total household energy signal is more
suitable and leads to a simpler approach of equalizing the means and
variances across the states of the sensitive appliances.

In our experiments, we show that mean and variance equaliza-
tion is highly effective against an adversary limited to the FHMM
modeling assumptions. However, a concern is whether the model is
oversimplified, and hence this approach may fail to suppress features
that would allow a more sophisticated adversary to recover sensitive
information. We confirm this concern by employing the specific de-
noising auto-encoder architecture proposed by [7] to effectively at-
tack the mean and variance equalization mechanism. We also inves-
tigate applying these neural networks in a privacy mechanism that
estimates and removes the energy usage of the sensitive appliances.

2. METHODS

2.1. Data Model

We consider energy usage data collected over T discrete time steps
from a household with M appliances. Let Y := (Y1, . . . , YT ) de-
note the total household energy usage over time. For each appliance
m ∈ {1, . . . ,M}, let Xm := (Xm,1, . . . , Xm,T ) denote its indi-
vidual energy usage and Sm := (Sm,1, . . . , Sm,T ) denote its oper-
ating states over time. The total household energy usage at time t is

Yt = Zt +

M∑
m=1

Xm,t,

where Zt denotes measurement noise, which could potentially have
a non-zero mean representing the energy usage of otherwise unac-
counted for appliances.

For our model-based approaches, we adopt additional statistical
assumptions. Applying a Gaussian FHMM assumes the following:
• The operating state sequences S1, . . . ,SM are mutually in-

dependent and each is a Markov chain.
• The energy usageXm,t of appliancem at time t depends only

on the corresponding state Sm,t.
• Given that the state Sm,t = s, the energy usage Xm,t is con-

ditionally Gaussian with state-specific mean µm,s and vari-
ance σ2

m,s.
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Fig. 1: F-scores for appliance state estimates via the Viterbi algorithm (assuming Gaussian FHMM) applied to the baseline unmodified signal
(“No Privacy”), mean equalized signal (“INFMEAN”), and mean and variance equalized signal (“INFMEANVAR”). In each sub-figure, a
different appliance is designated as the sensitive appliance.

• The measurement noise Zt is independent and Gaussian with
mean µZ and variance σ2

Z .

Hence, each appliance m is modeled as a mutually independent
Gaussian HMM with hidden states Sm and observations Xm.

2.2. Privacy and Utility Objectives

The goal is to release a modified aggregate energy usage signal Ŷ :=

(Ŷ1, . . . , ŶT ) that enables useful analytics while preserving the pri-
vacy of some sensitive information. Specific utility and privacy ob-
jectives have a significant impact on the nature of the problem, suit-
able approaches, and the fundamental privacy-utility tradeoffs that
arise. Another practical consideration is what data is directly avail-
able to the mechanism that generates Ŷ. The achievable privacy-
utility tradeoffs are affected by whether both the total energy signal
Y and the states (S1, . . . ,SM) are available, or only Y is available.

In general, the household may be concerned with arbitrary sen-
sitive information, such as lifestyle and behavioral details, related to
their energy consumption and appliance usage habits. However, for
a concrete privacy objective, we consider the specific goal of con-
cealing the operating states of a set of k sensitive appliances, which
are labeled by the first k indices. The specific privacy objective is
to reduce the detectability of the states (S1, . . . ,Sk) from Ŷ. For
validating a specific system, we will compare the performance of es-
timating the sensitive states (S1, . . . ,Sk) given the modified signal
Ŷ with the baseline estimation performance given the original Y.

For preserving the analytical utility of the modified signal Ŷ, a
natural approach would be to minimize some distortion metric be-
tween Ŷ and Y, if we assume that a signal close to the original
should have comparable utility to the unmodified Y, which would

implicitly provide optimal utility. However, this distortion mini-
mization objective is not necessarily optimal for all analytical tasks.
For example, if the analytics focuses on the non-sensitive appliances
(indexed by k + 1, . . . ,M ), it may be more appropriate instead to
minimize distortion with respect to

Ỹk := Y −
k∑

m=1

Xm,

that is, the total energy consumption minus the energy consumed by
the sensitive appliances. Note that if the sensitive and non-sensitive
appliances were independent, then

(Sk+1, . . . ,SM ,Xk+1, . . . ,XM )↔ Ỹk ↔ Y

forms a Markov chain. Hence, the inference of the non-sensitive
appliances given Ỹk can only be better than if given Y, since the
energy usage of the sensitive appliances can be viewed as noise.

The objective of minimizing some distortion metric between Ŷ
and Ỹk, such as the mean squared error (MSE)E[(Ŷ−Ỹk)

>(Ŷ−
Ỹk)], is also aligned with the privacy objective of concealing the
sensitive appliances, since it equates to the goal of removing their
contribution, and hence detectability, of their energy consumption
and states. Thus, if the aim is to conceal the sensitive appliances
while preserving the detectability of the rest, a suitable approach for
both privacy and utility is to attempt to approximate Ỹk with the
modified signal Ŷ, such as by subtracting out the minimum MSE
estimate of

∑k
m=1 Xm from Y. In contrast, if the distortion ob-

jective was instead measured with respect to Y, such as in [8, 9],
then a tradeoff arises between the privacy and utility objectives that
can be formulated as an optimization problem, however this is not
necessarily the most suitable approach for all analytical objectives.
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Fig. 2: F-scores for appliance state estimates via the denoising auto-encoder networks applied to baseline unmodified energy signal (“No
Privacy”), mean equalized signal (“MEq”), mean and variance equalized signal (“MVEq”), total energy with the ground truth sensitive
appliance energy subtracted (“GTSub”), and total energy with the estimated sensitive appliance energy subtracted (“EstSub”). In each sub-
figure, a different appliance is designated as the sensitive appliance.

2.3. Privacy via Mean and Variance Equalization

If we assume that the Gaussian FHMM is an accurate model for
the energy data, then equalizing the mean and variance of the en-
ergy usage of the sensitive appliances is a simple approach for
concealing the sensitive appliance operating states while preserv-
ing the detectability of the other appliances. Specifically, given
the total energy signal Y and the states of the sensitive appliances
(S1, . . . ,Sk), the modified signal Ŷ is produced according to

Ŷt := Yt +
k∑

m=1

(
λNm,t − µm,Sm,t

)
, (1)

where λ ∈ {0, 1} and Nm,t is independent zero-mean Gaus-
sian noise with variance (σ2

m,∗ − σ2
m,Sm,t

), where σ2
m,∗ :=

maxs∈Sm σ2
m,s denotes the maximal variance of the energy us-

age of appliance m across its operating states. If the states of the
sensitive appliances are not available, and the only input to the
mechanism is Y, then estimates of these states could first be made
from Y (such as via the Viterbi algorithm) and used instead.

For λ = 0, the procedure only consists of subtracting out the
mean energy usage of each sensitive appliance given their operat-
ing states at each time. Note that given its Gaussian distribution,
each µm,Sm,t is the minimum MSE estimate of Xm,t given Sm,t.
For λ = 1, noise is also added in order to equalize the variance
of the energy usage of the sensitive appliances across their operat-
ing states. In principle, if the Gaussian FHMM assumption is valid,
this would result in a modified signal Ŷ that is independent of the
states of the sensitive appliances (S1, . . . ,Sk). This follows since

(Nm,t + Xm,t − µm,Sm,t) is zero-mean Gaussian with variance
σ2
m,∗, independent of the state Sm,t.

2.4. Disaggregation with Neural Networks

While the mean and variance equalization privacy mechanism has
some theoretical justification, it relies upon modeling assumptions
that might not fully capture the complexity of the data. Hence, this
simple heuristic might not suppress all potential features linked to
the sensitive appliances. Motivated by these concerns, we investi-
gate approaches involving neural networks for both the mean and
variance equalization method and other privacy mechanisms.

A denoising autoencoder [11] neural network architecture is em-
ployed by [7] for the task of estimating an individual appliance’s
energy usage Xm from the total household energy usage Y. The
application of a denoising autoencoder is based on the principle that
Y can be viewed as a noisy version of Xm, corrupted by the en-
ergy usage of the other appliances. We employ the same network
architecture and training procedure as proposed in [7], which takes
as input a subsegment of Y to generate an estimate of Xm over the
same window, and consists of the following layers:

1. Input (nodes N = w, window size)
2. 1D convolution (8 filters, size=4, stride=1, linear)
3. Fully connected (N = 8 ∗ (w − 3), ReLU activation)
4. Fully connected (N = 128, ReLU activation)
5. Fully connected (N = 8 ∗ (w − 3), ReLU activation)
6. 1D convolution (1 filter, size=4, stride=1, linear)
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We additionally train networks for estimating Xm from the modified
energy signal Ŷ generated by various privacy mechanisms. When a
network is trained to estimate the same appliance energy usage that
the mechanism is attempting to conceal, it would represent an infer-
ence attack performed by an adversary. Otherwise, the performance
of the network is a benchmark for the utility objective of estimating
an appliance while a different one is being concealed by a privacy
mechanism. Further, we investigate a privacy mechanism that ap-
plies these networks to estimate and remove Xm from Y to conceal
appliance m.

3. EXPERIMENTAL RESULTS

3.1. UK-DALE Dataset

In our experiments, we used the UK-DALE dataset [12], which con-
sists of electricity usage data collected from five British households.
We focused on the 1/6 Hz data from house 1 of this dataset and
five of its major appliances: dishwasher, fridge freezer, kettle, mi-
crowave, and washer dryer. The dataset provides the total energy
usage signal Y and the individual appliance energy usage signals
(X1, . . . ,X5). For simplicity, we assume only two operating states
for each appliance, representing “off/idle” and “on/active”, and we
determine the states (S1, . . . ,S5) by applying a power threshold to
(X1, . . . ,X5). We consider only one sensitive appliance (k = 1) at
a time, but we rotate each of the five appliances into this role across
our experiments.

3.2. FHMM-based Inference and Attacks

We applied a Gaussian FHMM and used the Viterbi algorithm to in-
vestigate the effectiveness of mean and variance equalization as a
privacy mechanism against an adversary that also assumes a Gaus-
sian FHMM. We tested the mean and variance equalization proce-
dure, for both λ = 0 and λ = 1, with each of the five appliances
designated in turn as sensitive. When we apply this procedure, we
first estimate the states of the sensitive appliance from the total en-
ergy signal Y via the Viterbi algorithm, and then use those state
estimates in place of the true states as used in (1).

In Figure 1, we show the F-scores (given by 2(p · r)/(p + r),
where p and r are precision and recall) for the Viterbi algorithm state
estimates generated from the total energy signal Y (“No privacy”),
the modified energy signal produced by mean equalization (λ = 0,
“INFMEAN”), and the modified energy signal produced by mean
and variance equalization (λ = 1, “INFMEANVAR”). Note that for
four of the five appliances (except for the dishwasher), the operat-
ing states are detected from the original energy usage signal Y with
a non-zero F-score. Mean equalization (λ = 0) is quite effective,
driving the F-score close to zero for each of the appliances (all except
the washer dryer) when designated as sensitive. Mean and variance
equalization (λ = 1) drives the F-score to zero for any appliance
designated as sensitive, since it removes all distinguishable differ-
ences between states given the FHMM. Note that mean and variance
equalization often did not significantly degrade the F-scores for the
non-sensitive appliances, and in some cases even improved the F-
scores. For example, even though the dishwasher was not detectable
in the baseline, applying mean and variance equalization for the ket-
tle significantly raised its F-scores above zero.

3.3. Neural Network-based Inference and Attacks

For each appliance m, we trained a baseline auto-encoder network
to estimate the appliance energy usage Xm from Y. Additionally,

for each combination of target appliance m and sensitive appliance
(indexed as k = 1), we trained auto-encoder networks to estimate
Xm from various modified signals Ŷ:
• M-EQ: mean equalization, Ŷ given by (1) with λ = 0.
• MV-EQ: mean and variance equalization, Ŷ given by (1)

with λ = 1.
• GT-SUB: ground truth subtraction, Ŷ = Y−X1, represent-

ing a hypothetical, ideal privacy mechanism.
We conducted the following experiments for estimating the en-

ergy usage of each appliance Xm from modified signals Ŷ produced
by various privacy mechanisms for concealing appliance k = 1:
• No privacy: use baseline net to estimate Xm from input Y.
• MEq: use M-EQ net ... input Ŷ given by (1) with λ = 0.
• MVEq: use MV-EQ net ... input Ŷ given by (1) with λ = 1.
• GTSub: use GT-SUB net ... input Ŷ = Y −X1, i.e., testing

the hypothetical, ideal privacy mechanism.
• EstSub: use GT-SUB net ... input Ŷ = Y − X̂1, where X̂1

is estimated from Y using the baseline net.
From these appliance energy usage estimates, we use power thresh-
olding to determine appliance state estimates.

Figure 2 illustrates the F-scores obtained for the state estimates
produced by these experiments. Note that the F-scores for the sen-
sitive appliances in the “MEq” and “MVEq” experiments are gener-
ally decreased from the baseline “No privacy” case, but still indicate
some detectability. Thus, mean and variance equalization appears
less effective against an adversary employing a neural network than
one assuming a Gaussian FHMM and applying the Viterbi algorithm.
For the “GTSub” experiment, where we subtracted out the ground
truth of the sensitive appliance energy usage for a hypothetical, ideal
privacy mechanism, we would expect to see very low F-scores for
the sensitive appliances. However, this expectation was interestingly
unmet (at least for the kettle, fridge, and microwave), indicating that
the sensitive appliance can be detected even after its ground truth en-
ergy usage has been subtracted out from the total energy signal. Two
possible explanations for this observation are: 1) sampling misalign-
ment between the total energy usage and the individual appliance en-
ergy usage could prevent a clean subtraction and cause the operation
to produce artifacts, or 2) the sensitive appliances could be correlated
to other appliances allowing for some detectability even after a clean
subtraction. In the “EstSub” experiment, we see that subtracting out
the estimated sensitive appliance energy usage achieves similar or
better privacy than the ground truth subtraction, which could poten-
tially be explained by the noise in the estimate hindering detection.

4. CONCLUSION

We investigated approaches toward privacy-preserving energy dis-
aggregation that aim to remove the contribution of sensitive appli-
ances from a total household energy usage signal. Standard Gaus-
sian FHMM modeling assumptions suggest a simple heuristic based
on mean and variance equalization. This approach is quite effective
against an adversary limited to the same assumptions. However, we
demonstrate that an adversary employing neural networks can un-
dermine its effectiveness. While simple model assumptions may be
sufficient for successful inference, they may be inadequate for ensur-
ing privacy guarantees, since a sophisticated adversary might exploit
disregarded features. Applying neural networks directly in the pri-
vacy mechanism shows some promise toward addressing complex
data, but performance could be improved by future work.
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