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ABSTRACT
When user-generated data such as audio and video signals
are used to train machine learning algorithms, users’ privacy
must be considered before the learned model is released. In
this work, we present an open-source library for privacy-
preserving machine learning framework on smart devices.
The library allows Android and iOS devices to collectively
learn a common classifier/regression model from distributed
data with differential privacy, using a variant of minibatch
stochastic gradient descent method. The library allows re-
searchers and developers to easily implement and deploy
customized tasks that use on-device sensors to collect sensi-
tive data for machine learning.

Index Terms— differential privacy, machine learning,
smart device, crowdsourcing, distributed optimization

1. INTRODUCTION

Smart and connected devices are becoming increasingly per-
vasive in daily life, including smartphones, wearables, smart
home appliance, smart meters, connected cars, surveillance
cameras, and environmental sensors. Can we benefit from an-
alyzing the massive data generated from such devices, with-
out storing the data centrally nor breaching users’ privacy?
More specifically, can machine learning be outsourced to a
crowd of smart devices with a strong privacy guarantee?

In this paper, we present an open-source library1 for
privacy-preserving machine learning framework on smart de-
vices. The library allows Android and iOS devices to learn a
common classifier/regression model with differential privacy
by solving the distributed optimization problem:

min
w∈W

f(w) = min
w∈W

1

M

M∑
i=1

fi(w), (1)

where w is the common parameter vector, and fi(w) is the
empirical risk of device i:

fi(w) =
1

|Zi|
∑

(x,y)∈Zi
l(h(x;w), y). (2)

This research was supported in part by Google IoT Research Tech
Awards Pilot and Google Faculty Research Award.

1https://github.com/jihunhamm/Crowd-ML

Here Zi is the i.i.d. training data set of device i, and we as-
sume the datasets Z1, ..., ZM from M devices are also i.i.d.

Fig. 1. Distributed machine learning on smart devices

Iterative optimization of such objectives distributed over
multiple agents has been studied by many researchers (e.g.,
[1, 2, 3, 4].) In this paper, we focus on a semi-synchronous
model which consists of multiple devices and a central
server/coordinator with bounded communication delays (see
Fig. 1.) We present a variant of Stochastic Gradient Descent
(SGD) optimization which uses device-side and server-side
minibatches and also allows local weight update on devices.
Each device computes and transmits the weight vector w after
a number of local updates, and the server stores the average
of all w’s from multiple devices. The simplicity of gradient-
based optimization allows such a procedure to performed on
smart devices with limited resource.

Recently, many researchers have incorporated privacy
mechanisms into stochastic gradient descent-based opti-
mization [5, 6] and/or solving distributed learning problems
[7, 8, 9, 10], using differential privacy as a quantifiable mea-
sure of privacy [11, 12, 13]. An appropriate choice of mech-
anism depends on several factors–objective functions (e.g.,
ERM with strictly-convex, differentiable, and smooth loss
function [14]), granularity of privacy (e.g., sample, person, or
group) and adversary assumption (e.g., other devices, server,
or the public.) In this library, we use additive noise to sanitize
communication from a device to a server. We provide basic
sensitivity analysis of the proposed method in Sec. 3.

Although there has been a lot of research in distributed
optimization and learning, including a similar learning frame-
work for smart devices [4], Crowd-ML is unique in that it is
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an open-source library with emphasis on privacy. The opti-
mization algorithm in this library is also more general and
flexible than our previous paper [9].

2. DISTRIBUTED MACHINE LEARNING

2.1. Losses and classifiers

In the library we implement the following basic losses/classifiers:

l(h(x;w), y)

Logistic Regress. log(1 + e−ywT x) + 0.5λ‖w‖2

Softmax −wT
y x+log

∑
k e

wTk x+0.5λ
∑

k ‖wk‖2
Soft-margin SVM max{0, 1− y(wTx+ b)}+ 0.5λ‖w‖2

In addition, we also implement a multi-layer neural network,
with the choice of sum-squared-error or softmax at the top
layer, and the choice of activation functions from tanh, sig-
moid, and ReLU.

2.2. Optimization

We use a variant of the standard stochastic gradient descent

w(t+ 1) = w(t)− η(t)∇fi(w(t)) (3)

to solve (1). Firstly, we use both device-side and server-
side minibatches. Device-side minibatch plays an important
role in reducing the number of communication rounds. In an
environment where communication is costly, increasing the
device-side minibatch size Bd allows more work to be per-
formed on each device lowering the frequency of communi-
cation. Server-side minibatch plays a different role. Server-
side minibatch lowers the variance of the noisy weights from
multiple devices and also mitigates negative effects of com-
munication delays [3]. Secondly, we also allow each device to
perform self-updates of (3) and sends the current parameters
w to the server, instead of sending the gradient and relying on
the server to perform the update (3) 2. Similar to device mini-
batch, local updates can lower the communication frequency
and keep a device improving its model when it is off-line.

Several commonly learning rate types are implemented,
including η(t) = c0, η(t) = c0/t, η(t) = c0/

√
t, and two

adaptive methods – AdaGrad [15] and RMSprop [16].
We summarize the optimization procedure in Alg. 1. Note

that there are two iteration counters each for device-side and
server-side routines: number of minibatches processed at the
device (td) and the server (ts), number of local weight up-
dates at the device (sd), and number of weights received from
devices (ss). The learning rate can depend on all four coun-
ters. In Alg. 1 we show a simple rate that depends only on
local counters, e.g., η(Sd(td − 1) + sd). Using local coun-
ters as oppose to global counters makes little difference if all
devices communicate with a server with a similar frequency.

2The latter is equivalent to the former with Sd = 1 local update where
the server receives w(t)− η(t)∇fi(w(t)), assuming the server knows η(t).

Algorithm 1 Optimization for Crowd-ML
Device Routine

Init: read loss type, noise type, max iter Td, local update
num Sd, device minibatch size Bd, from the server
for td = 1, ..., Td do

Check out weights w and ts from the server
for sd = 1, ..., Sd do

Collect Bd i.i.d. samples Z = {(xi, yi)}
Compute avg gradient g = 1

|Z|
∑
z∈Z ∇wf(z)

Update w ← w − η(Sd(td − 1) + sd) g
end for
Add noise w ← w + ξ from (6)
Check in w and ts to the server

end for
Server Routine

for ts = 1, ..., Ts do
Set W = {}
for ss = 1, ..., Bs do

(Asynchronously) receive a check-out request and
send ŵ and ts
Receive a check-in request from a device
if Device ts matches server ts then

Receive w and append: W ←W ∪ {w}
end if

end for
Update ŵ ← 1

|W |
∑
w∈W w

end for

2.3. Perturbation by additive noise

Additive noise is sampled independently and added to the pa-
rameters to be transmitted from a device to a server. Two
commonly used distributions are Gaussian and Laplace-like
(6) distributions which we implemented in the library. Given
a privacy budget ε and the max number of communication Td,
a simple mechanism is to use i.i.d. noise for each communi-
cation. However, noise can be chosen to decrease geomet-
rically [8], decrease proportionally to the learning rate (see
Sec. 3), or sampled from a random process in which the noise
sequence is not independent [17]. Deciding an optimal noise
sequence with the least utility loss is still an open problem.

3. PRIVACY ANALYSIS

3.1. Differential privacy

A randomized algorithm that takes data D as input and out-
puts a function f is called ε-differentially private if

P (f(D) ∈ S) ≤ eεP (f(D′) ∈ S) (4)

for all measurable S ⊂ T of the output range and for all
datasets D and D′ differing in a single item, denoted by D ∼
D′. That is, even if an adversary knows the whole dataset D
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except for a single item, she cannot infer much more about
the unknown item from the output f of the algorithm. When
an algorithm outputs a real-valued vector f ∈ RD, its global
sensitivity [12] can be defined as

S(f) = max
D∼D′

‖f(D)− f(D′)‖ (5)

where ‖ · ‖ is a norm. An important result from [12] is that
a vector-valued output f with sensitivity S(f) can be made
ε-differentially private by perturbing f with an additive noise
vector η whose density is

P (η) ∝ e−
ε

S(f)
‖η‖. (6)

3.2. Privacy of Crowd-ML

We compute the sensitivity of each round of communications.
Without loss of generality, we assume D and D′ are different
only for the device 1 and the same for the other devices. The
private data of device 1 may be arbitrarily different in D and
D′. Suppose device 1 starts from the weightw(t, 0), performs
local updates for Sd times

w(t, s+1) = w(t, s)−η(t, s)∇fi(w(t, s)), s = 0, ..., Sd−1,
(7)

where w(t, 1), ..., w(t, Sd) is the sequence of intermediate
weights values. After Sd local updates, we get

w(t, Sd) = w(t, 0)−
Sd−1∑
s=0

η(t, s)∇fi(w(t, s)), (8)

and therefore the sensitivity of the weight sent to a server
S(w(t, Sd)) is

max
D∼D′

‖wD(t, Sd)− wD′(t, Sd)‖ (9)

= max
D∼D′

∥∥∥∥∥
Sd−1∑
s=0

η(t, s)[∇fi(wD(t, s))−∇f ′i(wD′(t, s))]

∥∥∥∥∥ .
For non-adaptive and decreasing rate η(t, s), we have

S(w(t, Sd)) ≤ Sd η(t, 0) S(∇fi), where (10)
S(∇fi) = max

D∼D′
‖∇fi(wD(t, s))−∇f ′i(wD′(t, s))‖

is the sensitivity of the gradient.
Note that if the server is trusted, then the sensitivity can

be reduced at least by a factor of 1/Bs, because an adversary
(i.e., another device) only sees an averaged parameter (vec-
tor) of Bs devices. Furthermore, if the granularity of privacy
we consider is a single sample instead of all N samples of a
device, we have an additional 1/N factor of reduction in the
sensitivity. These reductions in sensitivity can make privacy-
preserving learning practical.

3.2.1. Sensitivity of convex loss

The sensitivity (10) can be computed for certain loss func-
tions, such as strongly convex differentiable loss functions
with bounded derivatives |l′(·)| ≤ 1 [14]. In this case, the
sensitivity is bounded in terms of the convexity coefficient λ
(e.g., from regularization), and data diameter max ‖x‖:

S(w(t, Sd)) ≤ (2/λ) Sd η(t)max ‖x‖. (11)

3.2.2. Sensitivity of neural networks

We also consider the sensitivity of a neural network. A simple
way to bound (10) in a neural network is to simply clamp
each element of a gradient to a range [−c, c] [18] or bound
the norm (e.g., l2) of the gradient [19]. We also present an
alternative. Let oj = σ(nj) be the output of an activation
function, nj =

∑
i wjioi the net function, and δj = ∂l

∂nj
the

error. Using backpropagation, the gradient can be expressed
as

∂l

∂wji
=

∂l

∂nj

∂nj
∂wji

= δjoi, where (12)

δj =

{ ∂l
∂nj

, (top layer)

σ′(oj)
∑
k wkjδk, (other layers)

. (13)

For a bounded activation function (|σ| ≤ 1) with bounded
derivatives (|σ′| ≤ 1) such as sigmoid, the equation shows
that a gradient component ∂l/∂wij is basically bounded by
the product of weights from the top layer to the current layer.
Therefore we can also bound the sensitivity by bounding the
range of weight values.

4. EVALUATION

4.1. Platforms

Firebase. We use Google Firebase3 as a secure and scalable
database to store various parameters during optimization. The
database keeps three types of information. The first type is
task configuration such as loss, noise type and hyperparame-
ters of the algorithm. It is read-only for devices and writable
for the server. A device uses this information to initialize its
routine. The second type of information is the current state
such as weights w and iteration number t. Devices can only
check out and cannot check in these values. The third type
is the latest weights checked in by devices. Each device can
write to its own space, and the server reads the valued when
notified of any change in the values.

Server. The server/coordinator is simply another client of
the Firebase database that runs the server routine (Alg. 1)
as a node.js app written in JavaScript4. The script controls
the start and stop of training, and monitors the process by

3https://firebase.google.com/
4https://nodejs.org
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Fig. 2. Test accuracy with MNIST data, with different learning rates (c0 = 0.1, 1.0, 10) and different noise scales (s.d.=1E-3 to
1E1), for Laplace (top row) and Gaussian (bottom row) noise type.

computing accuracy using validation data during training.

Devices. The device routine (Alg. 1) is implemented as
an Android app in Java and an iOS app in Objective C, which
perform the same function. When the app is launched, it
waits for a wi-fi connection to avoid 4G usage, and then tries
to log in to the Firebase and initialize itself using the configu-
ration from the Firebase. If successful, the app starts reading
local private data from the device, checks out current param-
eters from the Firebase, computes the gradients/weights, and
checks in the result after perturbation by noise.

4.2. Experiments

We test the library with the MNIST dataset 5, with K = 10
classes, N = 60000/1000 training/testing samples, and the
dimensionality reduced to D = 50 using PCA.

The first set of tests demonstrates the impact of noise
scales and learning rates on convergence and accuracy. We
use a two-layer ReLU network with 75 hidden units per layer
with a softmax top layer. Other parameters are: max iteration
T = 1000, learning rate η(t) = c0/

√
t, server batch size

Bs = 1, device batch size Bd = 100, and local update num-
ber Sd = 10. Two types of noises were tested, Laplace (top
row) and Gaussian (bottom row.) We add i.i.d. noise to each
communication with varying scale (10−3, 10−2, 10−1, 1, 10).
From Fig. 2 we make the following observations. The final
accuracy after T = 1000 iterations is quite sensitive to the
constant c0 in the learning rate, and the best rate is different at
each noise level. A larger rate c0 = 10 works better with low
noise (s.d.=10−3) and a smaller rate c0 = 0.1 works better
with high noise (s.d.=10.) As the noise scale increases, the
accuracy of the best rate decreases, from 0.95 (s.d.=10−3)

5http://yann.lecun.com/exdb/mnist/

to 0.65 (s.d.=10). Using Laplace vs Gaussian noise with the
same scale does not seem to make a noticeable difference,
despite the fact that the privacy guarantees of using Laplace
vs Gaussian are quite different [20].

We also demonstrate the library on physical devices. We
use 80 Android devices of various manufacturers and An-
droid versions, and solve the MNIST 10 class problem using
softmax without hidden layers. Other parameters are: server
batch size Bs = 20, device batch size Bd = 100, no local up-
date Sd = 0, and no noise. An accuracy of 0.87 was achieved
after ts = 100 iterations, which took about 40–60 minutes
in real time. During this time, about 10 out of 80 devices
were actively running, and each device made about td = 25
communications on average with the server. In comparison,
when the same task was performed by a single device, the
accuracy after td = 25 communications was about 0.76 com-
pared to 0.87 with multiple devices, which demonstrates the
advantage of crowd-sourced learning.

5. CONCLUSION

In this paper, we presented an open-source library for privacy-
preserving machine learning for Android and iOS devices,
which minimizes empirical loss of various types using a
variant of stochastic gradient descent that uses device-side
and server-side minibatches and allows local weight updates.
Communication between a device and a server is sanitized by
additive noise to meet differential privacy criteria.

We envision that the library, as an open-source, will
evolve to assimilate newest updates in private distributed op-
timization, and allow non-experts to use the library to deploy
interesting learning tasks on smart devices.
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