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ABSTRACT

Preserving privacy of continuous and/or high-dimensional
data such as images, videos and audios is challenging. Syn-
tactic anonymization methods were proposed typically for
discrete data types and can be unsuitable. Differential pri-
vacy, which provides a stricter type of privacy, has shown
more success in sanitizing continuous data. However, both
syntactic and differential privacy are susceptible to infer-
ence attacks, i.e., an adversary can accurately guess sensitive
attributes from insensitive attributes. On the other hand,
minimax filters were proposed previously to minimize the
accuracy of inference while maximizing utility at the same
time. The paper presents noisy minimax filter that combines
minimax filter and differentially private mechanism, which
can attain high average utility and protection against infer-
ence attacks and a formal worst-case privacy guarantee. The
proposed algorithm is demonstrated with real databases of
faces, voices, and motion data.

Index Terms— syntactic anonymity, differential privacy,
minimax optimization, postprocessing, machine learning

1. INTRODUCTION

Privacy is becoming an important issue in mining, processing,
and learning from individuals’ data. In response to growing
privacy concerns, various privacy-preserving methods have
been proposed by privacy researchers (e.g., see [1] for a
review.) Earlier methods such as k-anonymity [2] and l-
diversity [3] focussed on syntactic anonymization of sensitive
attributes and quasi-identifiers in static databases. However,
it was shown that syntactic anonymization is susceptible to
several types of attacks such as the DeFinetti attack [4], in
which an adversary is able to infer sensitive attributes of
individuals accurately from insensitive, sanitized attributes.
Another challenge for syntactic methods is anonymizing
high-dimensional data. For example, k-anonymity is ineffec-
tive for high-dimensional sparse databases [5]. Furthermore,
syntactic anonymization is proposed mainly for databases
of discrete attributes, and can be unsuitable for protecting
continuous-valued data, such as photo, video, audio, and
biometric data. Differential privacy [6, 7, 8] was proposed

to address many weaknesses of syntactic methods, and has
since gained popularity due to its strong guarantees. How-
ever, similar to syntactic anonymization, differential privacy
is not immune from inference attack [9], as it only prevents
an adversary from gaining additional knowledge by inclu-
sion/exclusion of a participant [10].

Recently, Hamm [11] proposed minimax filters which ad-
dress main challenges discussed so far. The algorithm learns
a linear or nonlinear filter from continuous and/or high-
dimensional data and produces a dimensionality-reduced,
‘filtered’ representation of data. The filter allows useful in-
formation to pass through but prevents other information that
can be used for inference attack from passing through.1. One
disadvantage of minimax filters is that the privacy guarantee
it provides is only in expectation (or in empirical average),
which may be considered weaker than others such as differ-
ential privacy. Since minimax filter and differential privacy
have almost independent goals and mechanisms to achieve
them, it is natural to ask if the two methods can be combined.

This paper presents noisy minimax filter, which combines
minimax filter with additive noise perturbation to satisfy the
differential privacy criterion. Two methods of combination –
preprocessing and postprocessing – are proposed (see Fig. 2.)
In the preprocessing approach, a minimax filter is applied be-
fore perturbation to reduce the sensitivity of transformed data,
so that the same level of differential privacy is achieved with
less noise. However, it requires that the curator who trains the
minimax filter is trusted by participants. In the postprocess-
ing approach, a minimax filter is applied after perturbation.
Since postprocessing cannot worsen differential privacy [10],
this approach has the advantages of not requiring a trusted
curator and no leakage of information through the released
filter.

Experiments with real databases yield intuitive results.
Differential privacy and resilience to inference are indeed
different goals, such that using differentially private mech-
anism alone to achieve the latter requires a large amount of
noise that destroys data utility. In contrast, minimax filters
can suppress inference attack with little loss of utility. Noisy

1Originally, minimax filters were demonstrated for filtering out identity
information, but they can be used for filtering out any sensitive attribute.
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minimax filters, therefore, can provide a formal differential
privacy in the worst case, and high on-average utility and
protection against inference attacks.

2. NOISY MINIMAX FILTER

2.1. Minimax filter

Minimax filter [11] is a (deterministic) non-invertible trans-
formation of input signal such that the transformed data has
an optimal utility-privacy tradeoff. Formally, let X ⊂ RD be
the space of features and let g(x;u) : XD → Rd a filter pa-
rameterized by u. Let z be a target variable such as medical
diagnosis that is of interest to participants or the public. If a
researcher has a predictor zpred(g(x);w) (parameterized by
w), then the expected dis-utility of the filter and the predictor
can be measured by the expected risk:

futil(u,w) = E[l(zpred(g(x;u);w), ztrue)]. (1)

At the same time, an adversary can make a prediction
ypred(g(x); v) (parameterized by v) of a private variable
y, which can be an identifier (in re-identification attacks) or a
sensitive attribute (in inference attacks) from the filtered fea-
tures g(x). The expected privacy of the filter and the predictor
can also be measured by the expected risk 2:

fpriv(u, v) = E[l(ypred(g(x;u); v), ytrue)]. (2)

The goal of a filter designer is to find a filter with parameter
u that achieves the two objectives – minimum dis-utility

min
u

min
w
futil(u,w) = min

u
[−max

w
−futil(u,w)], (3)

and maximum privacy

max
u

min
v
fpriv(u, v) = −min

u
[max
v
−fpriv(u, v)]. (4)

To achieve the two opposing goals, one solves the following:

min
u

[−ρmax
w
−futil(u,w) + max

v
−fpriv(u, v)], (5)

where ρ determines the relative importance of utility versus
privacy. The solution to (5) is referred to as Minimax filter
[11] and is by definition an optimal filter for utility-privacy
tradeoff in terms of expected risks, given the family of filters
and the family of losses/classifiers. Fig. 1 is an example with
multilayer neural network as a filer and classifiers.

2.2. Differentially private minimax filter

2.2.1. Local differential privacy for continuous data

A randomized algorithm that takes data D as input and out-
puts a function f is called ε-differentially private if

P (f(D) ∈ S) ≤ eεP (f(D′) ∈ S) (6)
2Notations in this paper are different from [11].

Fig. 1. Minimax filter.

for all measurable S ⊂ T of the output range and for all
datasets D and D′ differing in a single item, denoted by D ∼
D′. That is, even if an adversary knows the whole dataset D
except for a single item, she cannot infer much more about
the unknown item from the output f of the algorithm. When
an algorithm outputs a real-valued vector f ∈ RD, its global
sensitivity [7] can be defined as

S(f) = max
D∼D′

‖f(D)− f(D′)‖ (7)

where ‖ · ‖ is the norm such as the Euclidean norm. An im-
portant result from [7] is that a vector-valued output f with
sensitivity S(f) can be made ε-differentially private by per-
turbing f with an additive noise vector ξ whose density is

P (ξ) ∝ e−
ε

S(f)
‖ξ‖. (8)

The definition of adjacency D ∼ D′ depends on problem
setting. In this paper, privacy of a single sample D = {x}
is considered, and the participants do not trust the data col-
lector/curator and therefore apply perturbation before sending
data to the collector/curator, also known as local differential
privacy [12]. In such a setting, f(·) is the identity function,
and the sensitivity (7) is simply the diameter of data3

S = max
x,x′∈X

‖x− x′‖. (9)

Without making any fragile assumption on the data, the paper
proposes to directly clamp the diameter of X with a bounding
function b : RD → RD:

1. Hard-bound: b(x) = min{1, 1/‖x‖}x
2. Soft-bound: b(x) = tanh(a‖x‖)x

3Assuming X is compact.
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3. Normalization: b(x) = x/‖x‖.

When the norm of features does not contain crucial informa-
tion, the bounding functions can limit the sensitivity of trans-
mitting the original data without negative effects.

2.2.2. Preprocessing vs postprocessing

Pre-processing

Post-processing

data filter noise
g(x) b(g(x))+ξx

data noise filter
b(x)+ξ g(b(x)+ξ)x

Target task

Private task

Target task

Private task

Fig. 2. Pre vs postprocessing approach to differentially pri-
vate minimax filtering.

Minimax filters can be made locally differentially private
by additive noise (8) in the signal chain of the filter. Depend-
ing on where the noise is injected, there are preprocessing and
postprocessing approaches (see Fig. 2.) In preprocessing, the
original feature x is first filtered g(x), then made ε-differential
private by bounding and perturbation b(g(x)) + ξ. In post-
processing, the original feature x is first made ε-differentially
private by bounding and perturbation b(x) + ξ, followed by
filtering g(b(x) + ξ). These two approaches have different
advantages and disadvantages.

A scenario when preprocessing is preferable to postpro-
cessing is as follows. For convenience of explanation, let’s
assume that the private variable y is subject identity. Define
between-subject sensitivity as the max distance of two sam-
ples from different subjects that have the same labels z = z′:

Sb = max
y 6=y′,z=z′

‖x− x′‖. (10)

Similarly, define within-subject sensitivity as the maximum
distance of two samples from the same subject that have dif-
ferent labels z 6= z′:

Sw = max
y=y′,z 6=z′

‖x− x′‖. (11)

If Sb > Sw for a given problem (Fig. 3a,), then after filtering
we need to add less noise to achieve the same ε-level com-
pared to the amount of noise required before filtering. This
will results in better utility of the preprocessing approach over
the postprocessing approach. From the same reasoning, if
Sw > Sb (Fig. 3b,) then filtering will have little effect on sen-
sitivity, and preprocessing will offer no advantage over post-
processing. However, there are other aspects to consider as

well. In preprocessing, the training of a minimax filter by
solving (5) is not itself a differentially private procedure and
requires a trusted collector/curator. In addition, the learned
filters, when released, can leak information about private data.
In contrast, postprocessing makes the process much simpler.
Any postprocessing – including training of minimax filters
– does not worsen differential privacy guarantees [10], and
there is no need for a trusted collector/curator.

Subj 1
z = -1

Subj 1
z = +1

Subj 2
z = -1

Subj 2
z = +1

z = -1

z = +1

Filtering

Subj 1
z = -1

Subj 1
z = +1

Subj 2
z = -1

Subj 2
z = +1

z = -1

z = +1

a.

b.

Filtering

Fig. 3. Two examples of a dataset with the same data diameter
and different distributions. a. When between-subject sensitiv-
ity is large. b. When within-subject sensitivity is large.

3. EXPERIMENTS

Four types of noisy filters are compared: PCA-pre, PCA-post,
minimax-pre, and minimax-post. PCA is chosen as a non-
minimax reference filter, which preserves the original sig-
nal in the minimum mean-squared-error sense. PCA-pre/post
means that PCA is applied before/after the perturbation sim-
ilarly to minimax-pre/post (see Fig. 2.) For minimax filter, a
linear filter of the same dimension d as PCA is used. Tests
are performed for different values of d, and only the case of
d = 20 is reported due to lack of space. The tradeoff coeffi-
cient (5) of ρ = 10 is used. For all classifiers, logistic regres-
sion with a regularization factor (10−6) is used throughout
the tests. Optimization of (5) is done similarly to [11]. All
tests are repeated 10 times for independent noise samples of
(8), for each of 10 random training/test splits.

3.1. Datasets

Three public datasets of face, voice, and motion data are
used for evaluating noisy minimax filter (see [11] for details.)
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Fig. 4. Impact of four noisy filters (PCA-pre/post and Minimax-pre/post) on the accuracy of target and private tasks for three
datasets (GENKI, ENTERFACE, HAR), over the range of ε−1 = {0, 10−3, 10−2, 10−1, 100, 101}. Top row is the target task
accuracy (higher is better) and bottom row is the private task accuracy (lower is better.) Minimax filters can limit the accuracy
of inference attack (bottom row) to almost chance levels, in all ranges of ε.

Gender/expression recognition from face. The GENKI
database [13] consists of face images with varying poses and
facial expressions, with D = 256 and N = 1740 for training
and N = 100 for testing. The target task is binary facial
expression classification and the private task is binary gender
classification.
Emotion recognition from speech. The ENTERFACE
database [14] is an audiovisual emotion databases of En-
glish sentences. There are N = 427 samples of D = 52
dimensional feature vectors from S = 43 subjects. The target
task is binary classification of ‘happy’ vs ‘non-happy’ emo-
tions from speech, and the private task is multiclass (S = 43)
subject identification.
Activity recognition from accelerometry. The HAR database
[15] is a collection of motion sensor data on a smartphone by
multiple subjects performing different activities. There are
N = 10299 samples of D = 561 dimensional feature vec-
tors. Among these, randomly-chosen 15 subjects are used.
The target task is multiclass (K = 6) classification of ac-
tivity, and the private task is multiclass (S = 15) subject
identification.

3.2. Results

From Fig. 4 we can make the following observations. Firstly,
within each plot, increasing the privacy level from left
(ε−1=0) to right (ε−1=10) lowers the accuracy of both target
and private tasks for all filter types and datasets, which is
intuitive. Secondly, target task accuracy (top row) shows that
the four filters are equally accurate with no noise (ε−1=0). In
GENKI and HAR, preprocessing is better than postprocess-

ing for both PCA and Minimax, and Minimax-pre performs
the best. In ENTERFACE, preprocessing and postprocess-
ing approaches perform similarly, and the difference among
filters is relatively small. This result may be ascribed to the
discussion in Sec. 2.2.2. Thirdly, and most importantly, pri-
vate task accuracy (bottom row) is quite different between
the proposed (Minimax-pre/post) and the reference (PCA-
pre/post) methods. For both Minimax-pre and Minimax-post,
the private task accuracy is almost as low as the chance accu-
racy of each dataset (0.5, 0.03, 0.07) regardless of the noise
level ε, which demonstrates that minimax filter can prevent
inference attacks with little help of noise. In contrast, the
non-minimax filters (PCA-pre/post) allow an adversary to
infer private variables quite accurately (0.8, 0.5, 0.3) when
no noise is used (ε−1=0). Preventing such an attack for
non-minimax filters requires a large amount of noise (e.g.,
ε−1=0.1), which destroys data utility.

4. CONCLUSION

The paper presented preprocessing and postprocessing ap-
proaches to impart differential privacy to minimax filters.
Due to different properties of the two concepts, the combina-
tion can inherit advantages from both sides – high on-average
utility and protection against inference attacks, and a formal
privacy guarantee in the worst case. Future work will focus
on refining the proposed methods. In particular, the postpro-
cessing approach can potentially use the knowledge of noise
distribution to improve learning, analogous to [16] where
probabilistic estimators are learned from the noisy output of
a mechanism.
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