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ABSTRACT

The Restricted Isometry Property (RIP) is a useful mea-
sure of which measurement matrices will work for
sparse recovery. The RIP-1 is an L1 variant of the
RIP that can be satisfied by sparse matrices, allowing
for faster embedding and recovery. While L1 minimiza-
tion is guaranteed to work for all matrices satisfying the
RIP-1, faster iterative techniques were only known to
work when the matrix is the adjacency of an expander
graph. We show that Sequential Sparse Matching Pur-
suit (SSMP) works on all matrices satisfying the RIP-1,
giving the first demonstration of near-linear recovery
time for arbitrary RIP-1 matrices.

Index Terms— Sparse recovery, compressed sens-
ing

1. INTRODUCTION

Compressed sensing is a popular framework for signal
recovery developed over the past decade. The aim is to
recover a k-sparse vector z € R"™ from a noisy measure-
ment b = Ax + u, where A € R™*" is a well-chosen
“measurement matrix” with m < n and p is arbitrary
noise. From this observation b, the goal is to recover an
estimate = of x with

17 = [l = O(lll)-

Much of the compressed sensing literature is based
on the Restricted Isometry Property (RIP). Unfortu-
nately, in the parameter regime of interest the RIP only
holds for dense matrices [1], which are inefficient to
store and manipulate. This led to the introduction of the
RIP-1, an ¢ variant of the RIP, which is achievable with
sparse matrices and is sufficient for L.1 minimization to
achieve robust sparse recovery [2]:
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Definition 1.1. A matrix A € R™*" satisfies the (k,€)
RIP-1 if, for all k-sparse © € R",

(1 =)l Az, <[], <[lAz]; .

For binary matrices, the RIP-1 is essentially equiva-
lent to A being the adjacency matrix of an unbalanced
bipartite expander [2]. As an example, a random bi-
nary matrix with O(%log(n/k)) ones per column and
m = O(e%k:log(n/k‘)) will usually satisfy the (k,€)
RIP-1. However, the definition encompasses nonbinary
matrices.

One interesting example of nonbinary RIP-1 matri-
ces comes from randomly flipping the sign of each en-
try of an expander adjacency matrix. The result, which
behaves like a random sparse {0, £1} matrix, is quite
similar to a COUNTSKETCH matrix [3]. The random
signs cause the noise to largely cancel itself out, leading
to better performance than binary matrices like COUNT-
MIN [4, 5].

In this paper, we show that Sequential Sparse Match-

ing Pursuit (SSMP), an iterative algorithm introduced
in [6], works on arbitrary RIP-1 matrices. Previously,
SSMP was only known to work for expander adjacency
matrices, as did all other fast iterative methods [7, 8, 9,
10, 11].
Theorem 1.2. Let A € R™ " satisfy the (ck, &) RIP-1
for some (sufficiently large) constant c. Let x € R" be
k-sparse, u € R™, and let T be the result of running
SSMP on (A, Ax + u, k). Then

17 = zlly = Olull,)- e9)

Alternatively, one could give a guarantee for non-
sparse inputs, e.g. for all z € R™ SSMP gives = with

|Z —z|l; = O( min Hxl—le).

k-sparse x’
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This follows from Theorem 1.2 and the triangle inequal-
ity, since we can set u = A(z’ — x) and then |||, <

X IIAG = )il < X lla" = 2l

1.1. Related work.

The RIP-1 was introduced in [2], where it was shown
to imply robust recovery using L1 minimization. This
gives fast embedding times, since the measurement ma-
trix can be sparse, but not fast recovery. Subsequently,
a number of fast iterative methods have been proposed.
Expander Matching Pursuit (EMP) [7], Sparse Match-
ing Pursuit (SMP) [8], and Sequential Sparse Matching
Pursuit (SSMP) [6] all use O(n) recovery time and get
the robustness guarantee (1) (see also [12] for a survey).
Another set of work applies to “exact” recovery with
w = 09, 10] or very small [11]. The phase transi-
tion of some of these methods is explored in [13]. How-
ever, all of these iterative methods use more than just the
RIP-1: they expect the matrix to be the adjacency of an
expander.

2. SSMP ALGORITHM

The SSMP algorithm is shown as Algorithm 2.1. It uses
the following definition: for any vector x € R", de-
fine Hi(xz) € R™ to be the restriction of x to its k
largest coefficients. In [6] it was shown how to maintain
a data structure to implement the algorithm in O (nd(d+
logn)) time per inner loop, where d is the matrix col-
umn sparsity (i.e. typically d = O(log 7)). The method
works for arbitrary RIP-1 matrices, not just expander ad-
jacency matrices.

1: procedure SSMP(A, b, k)

2. 29=0

3 forj  1,....T = Olog|lz]|, / [lull,) do
4 790 it

5. fora+1,...,r=(c—1)k+1do
6 (4,2) « argming; . |0 =A@t + ze5) ||
7 Fhe  gha=l 4 e

8 end for

9 7 Hp(z9m)
10: end for

11:  return 2’ =27
12: end procedure

> Restrict to k£ terms

Algorithm 2.1: SSMP.

The SSMP algorithm iteratively refines its estimate
77% of the signal x. The inner loop adds a single
coordinate to the estimate, which we show decreases
the residual error ||A(z —a7®) + pl|, by at least a
1-— m factor, unless we have already converged to
o = 27|, = O(lelly)-

After r = O(k) rounds, we will have that

i 1 "
A -7+l < LAt -0 4]

At this point, having updated our estimate many times,
it is starting to lose the sparsity we need to apply the
RIP-1. Therefore in our outer loop, we resparsify 77+
back down to k terms. This increases || A(z — 29%) + qu
by at most a 2 + O(e) factor, so we get

s 1 o
1@ =270 +ul)y < 5 Al =2°) +uf),

in every round, until it converges to O(||x|;)-

The tricky part, and the novel part of this paper, is
showing progress in each step of the inner loop. The
original argument relied on properties of expander ma-
trices; here, we solely consider geometry and the RIP-1.
We discuss it in Section 3. The other parts are straight-
forward, and covered in Section 4.

3. PROOF OF SEQUENTIAL PROGRESS
We start with a geometric lemma about the ¢; norm:
Lemma 3.1. Let x1,...,25,0 € R™, and z = u +

>~ x;. Suppose that ||p||; < c||z||; and

)

1

(L= llzilly) <
i=1

s
D i
=1

for some constants 0 < ¢, e < 1/2. Then there exists an
i such that ||z — ||, < (1 —1(1—2e —5¢)) ||,

Intuitively, the condition means the z; form a chain
that is nearly at its maximal length; it is nearly “taut.”
Almost all the mass needs to be oriented toward the final
vector z; very little is “slack” that can be “wasted” by
moving in superfluous directions. On average, the z; are
pointed in the right direction and fairly large; hence at
least one x; is both of these.
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Proof. Define the “projection” operator p(a, b) of a onto
b to be the coordinatewise nearest neighbor of a to the
intervals [0, b;] for each coordinate i. That is, for positive
coordinates b; > 0, we define

0 ifa; <0
pla,b); =< a; if0<a; <b
b; ifa; > b;

and analogously for negative coordinates (so p(a,b); =
—p(—a, —b);). As a property of this operator, for all a, b
we havellb — p(a, b)|l, = [Ib], — [lp(a. b);.

For simplicity of notation, let v; = z; for¢ > 1
and vg = p, 50 z = » . v Letu; = p(vs,2), and
w; = ||v; —will; = |Jvill; — ||will;. Then w; is the part
of v; moving in the right direction, and w; is the amount

of mass “wasted” in the wrong direction. In particular,
Iz = villy = llz — - villy

lluly + w

willy + [Jus
= HZH1 - ()

So we just want to show that some 7 has large
|luil|; — w;. First we will show that ||u;||, is large
on average, then that w; is small on average, and hence
the difference is large for at least one ¢. First, we claim

S
D Ml = =]l -
=0

We do this by showing that for any coordinate j,
Yoi o (w);l |zj|. WLOG suppose z; > 0, so
(u;);j > 0 for all . Then by the definition of pro-
jection, for each i either (u;); > (v;); or (u;); = z;. If
the latter ever happens, Y ;_(u;); > max (u;); = 253
otherwise, 37 (ui); = > 25_o(vi); = 2

Now, consider showing that the w; are small. In-
tuitively, this is “wasted” mass that doesn’t help reach
the goal: it’s in the wrong direction, or overshooting the
mark. We don’t have enough slack to waste much mass,

0 » ., w; must be small. In equations,

S S
Soall =Dl
=1y =

S
= (w; + [|udlly)

=1

S

> lzlly = lluoll, + sz‘

< > - ||m|1> - HuOHﬁZ

3)

1—c¢
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and hence

1—c¢

s
D i
=1

S
€
Uzl + ) > =2 ally + D w

i=1

S
> =2l + > wi
1 =1

SO

szf

Hence we have that the “non-wasted” mass u; is
large, and the “wasted” mass w; is small. We just need

2+7)||M||1 76||z||1- )

to show that some particular ¢ has large ||u;||; — w;, but
this will be true on average.
Subtracting Equation 4 from Equation 3,
S
D Ml = wi
i=1
€
> ([Izlly = lluolly) — (2 + f) lelly + 17— ll=ll1)
€
> (1- 17) 2]l = 3+ i) [elly
(1 +c)
> (1 =3c———) ;-
So for e < 1/2,
S
Do lluilly —wi > (1 =26 =5¢) 2], (5)
i=1

Let j be such that ||u;||, — w; is above the mean.
Then by Equation 5 and Equation 2,

Jusll, —wy > < (1~ 26 = 50) =]
e =l = el ~ sl +
> (1- 2 (1— 26— 50)) [s],
as desired. [

Now we can apply Lemma 3.1 to matrices satisfying
the RIP:

Lemma 3.2. Suppose A satisfies an RIP-1 of order

. 1
(5,1/10), s > 1. If y is s-sparse, and |[w||; < 55 |
then there exists a 1-sparse z such that

_1
[A(Yy = 2) +wlly < e72 [[Ay +wl]; .



Proof. First, note that

1

1
W 97 HAyH1

lwlly < [Ay[l; <

< g Iy +ull,.

Splityasy = y1 +y2 + ... + ys, for orthogonal

1-sparse y;. Let v; = Ay;. Let e = 1/10, so we have by
the RIP-1 of order (s, €) that

(1 =€) fJvilly < llwilly < Nlvilly

and

= [lAylly = llyll, =

(1—e Z [[oilly -

Hence we can apply Lemma 3.1: for any noise vector w
with ||lw]]; < ¢||Ay + w||,, there exists a j with

=1

1
Ay —y;) +wl; < (1—*(1 2e—5¢)) || Ay 4w, .

For ¢ < 1/10 and ¢ < 1/25, this gives

[A(y —yj) +wll; < (1 - *) Ay +wl|;
<e % | Ay + wl|;

So z = y; satisfies the desired result. ]

4. ANALYSIS OF SSMP

We now apply our results to analyze SSMP. Since 7/
is (k + a)-sparse, 77°% — x is (2k + a)-sparse. Hence we
have the following corollary of Lemma 3.2:

Corollary 4.1. In SSMP, if A satisfies an RIP-1 of order
((c+1)k,1/10), and ||p||; < 35 HZE\]’“ — ||, then

4zt ) < o

A" = ]|,
forall j and a.

If we telescope this, with H,, ~ logn denoting the
nth harmonic number » " , %, we have

HA@J'J _ le < 6—%(H2k+t—1—H2k—1) HA@J'»O _ bH )

Setting t = ck + 1, since H(g ) — Hop—1 > log =5 2fe

we have

HA/\]ck-i-l HAAJO_bHy

For ¢ = 128, this gives

s < 2,

Because A satisfies the RIP-1 we know

[AG* ~2) - ], 2 [JAG ~ ]|, ~

> (1= [[a7 —af|, — lul,

so since € < 1/2,

Lt 2|, <2 | AZI+E —

|2 bll, + 2 lully

1 s
< 711489 — ]}, + 2l

IN

1 = 9
1 HA(JUJ - Uc)Hl + 1 2]l

IN

1 9

— |77 — x|, + .

I al, + 2o,

Since z is k-sparse and 2711 = Hj,(2771) is the near-
est k-sparse vector to 2771, we have by the triangle
inequality that

H/x\j-ﬁ-l _

ol < 2@ -l

1, 9
< B |27 — 37H1+§ llally

Now, if |||, < % HEJ

s we have
B

3.,
_mH1 = 1 ij _"EH1'

This means the error decreases to O(||ul;) in T =

O(log Hﬁ”i) iterations, after which it never grows larger
then O(||t]|;). This gives Theorem 1.2.

5. CONCLUSION

We have shown that the SSMP algorithm gives deter-
ministic ¢; sparse recovery for arbitrary RIP-1 matrices,
not just those binary ones. This allows us to use ma-
trices, such as the COUNTSKETCH matrix, that are also
suitable for high-probability ¢2 recovery. One interest-
ing question is whether SSMP on such a matrix will have
high-probability /> recovery. One can show that one of
the early estimates z°:* will be close to the Count-Sketch
estimate, and hence a good ¢y estimate with high prob-
ability; however, we do not know how to show that the
later adjustments do not combine into a bad ¢, result.
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