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ABSTRACT

Binary embedding is the problem of mapping points from a
high-dimensional space to a Hamming cube in lower dimen-
sion while preserving pairwise distances. An efficient way to
accomplish this is to make use of fast embedding techniques
involving Fourier transform e.g. circulant matrices. While
binary embedding has been studied extensively, theoretical
results on fast binary embedding are rather limited. In this
work, we build upon the recent literature to obtain signifi-
cantly better dependencies on the problem parameters. A set
of N points in Rn can be properly embedded into the Ham-
ming cube {±1}k with δ distortion, by using k ∼ δ−3 logN
samples which is optimal in the number of pointsN and com-
pares well with the optimal distortion dependency δ−2. Our
optimal embedding result applies in the regime logN ≲ n1/3.
Furthermore, if the looser condition logN ≲

√
n holds, we

show that all but an arbitrarily small fraction of the points can
be optimally embedded. We believe the proposed techniques
can be useful to obtain improved guarantees for other nonlin-
ear embedding problems.

1 Introduction
Binary embedding problem aims to map a set of points in a
high-dimensional space to the Hamming cube in a lower di-
mension. The task is preserving the distances between the
points while keeping embedding dimension as small as possi-
ble. A common approach to accomplish this task is applying
a random map to the data. In particular, given a point x ∈ Rn,
we first apply a linear transformation x → Ax ∈ Rk and then
apply the discretization Ax→ sgn(Ax) where sgn(⋅) returns
the vector of signs. Given a set S and distortion level δ > 0,
we are interested in ensuring that for all x,y ∈ S, A satisfies

∣k−1∥sgn(Ax), sgn(Ay)∥H − ang(x,y)∣ ≤ δ.

Here, ∥⋅, ⋅∥H is the Hamming distance between two {0,1}k
vectors and ang(⋅) is the angular distance which returns the
smaller angle between two points normalized by π. Often we
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are interested in embedding a large set of points S = {vi}Ni=1
or a continuous set such as a subspace.

An important aspect of the embedding problems is the
tradeoff between the number of points N and the em-
bedding dimension m. For linear embedding, classical
Johnson-Lindenstrauss (JL) Lemma guarantees that by us-
ing k ≈ δ−2 logN samples, N points can be embedded with
δ distortion. More recently, this tradeoff attracted significant
attention for the binary embedding problem. Specifically, by
choosing A to be a Gaussian matrix, it can be trivially shown
that one can achieve a good binary embedding under the
same assumption of k ≈ δ−2 logN . Embedding continuous
sets is a more challenging problem and it is studied in a series
of papers [1–5] with results mostly restricted to Gaussian
ensemble. These are of interest for sparse estimation and
subspace learning problems.

While the results on dense Gaussian matrices are valu-
able, for most applications we are interested in faster pro-
jections where embedding can be done in near-linear time.
Such projections make use of fast matrix multiplications such
as the Fourier Transform followed by random diagonal mod-
ulations and are broadly called Fast Johnson-Lindenstrauss
Transform (FJLT). Fast transforms reduces embedding time
to O(n logn) from O(kn), which is significantly more ef-
ficient in the regime k = O(poly(n)). The theoretical re-
sults for fast binary embedding techniques are rather limited
[2, 6, 7]. Related to this work, recently Yu et al. provided an
analysis of circulant projections. Loosely speaking, the au-
thors show that by using k ∼ log2N samples, binary embed-
ding with small distortion is possible as long as logN ≲ n1/6.
Another related work connected to nonlinear embedding is
due to Le et al. [8]. Here, the authors speed up Kernel ap-
proximation [9] by making use of FJLT however the number
of required Fourier features scale quadratically due to subop-
timal concentration bounds. There are also several works on
the applications of fast binary projections in large scale image
retrieval and hashing algorithms [10–12].
Contributions: A natural question is whether fast projections
can achieve the optimal binary embedding guarantees. In this
work, we answer this question positively. We show that using
k ∼ logN samples, binary embedding via circulant matrices
will be successful as long as logN ≲ n1/2. This shows that
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Fast JL Transform not only works well for linear embedding
but also for highly nonlinear problems and the embedding be-
havior is essentially same. Specifically, we have two sets of
results. Our first set of results consider embedding with circu-
lant projections and the associated theorem has a dependency
on the coherence of the set {vi}Ni=1. When the points are
not spiky, (i.e. small infinity norm), the optimal embedding
works for a larger regime of N . For maximally incoherent
sets we can allow logN ≲ n1/2. Our second result is a corol-
lary of the first one and attempts to remove the dependence
on incoherence. This is done by applying an additional layer
of randomness x → Hdiag(b)x where H is the Hadamard
transform and diag(b) is a diagonal matrix with independent
Rademacher diagonal entries. The overall embedding takes
the form v → sgn(AHdiag(b)v) where A is the binary em-
bedding matrix. Observe that all matrix multiplications are
still near-linear time. This model makes no assumption on
the set {vi}Ni=1 and optimal embedding is possible as soon as
logN ≲ n1/3. Furthermore, if logN ≲

√
n, fast and optimal

binary embedding still succeeds for all but arbitrarily small
fraction of the points.

2 Main results
To achieve optimal binary embedding guarantees, we rely on
circulant embedding matrices where the projection matrix is
given by A =RChdiag(r). Here,

• R ∈ Rk×n is the restriction operator that selects k rows
out of n uniformly at random.

• h,r ∈ Rn are independent vectors with independent
standard normal entries.

• Ch is a circulant matrix whose first row is equal to h∗.

• diag(r) is the diagonal matrix obtained from the vector
r.

Suppose we are given N unit vectors in Rn namely {vi}Ni=1.
Binary embedding is the task of mapping this points to a
low-dimensional Hamming cube in Rk while preserving the
pairwise distances. We are interested in ensuring that for all
1 ≤ i, j ≤ N , A satisfies

∣k−1∥sgn(Avi), sgn(Avj)∥H − ang(vi,vj)∣ ≤ δ.

As a geometric feature, we shall make use of the coherence
of the set which is defined as

ρ =max{ sup
1≤i≤N

∥vi∥`∞ , sup
1≤i≠j≤N

∥vi − vj∥`∞
∥vi − vj∥`2

}.

Coherence naturally lies between 1/
√
n and 1. For our results

to work, we make the following assumptions on N,k,n and
the coherence parameter.

Condition 2.1 There exists sufficiently large nonnegative
constants c1, c2, c31, such that

1. k > c1δ−3 logN .

2. c2δkρ logn < 1.

3. δ ≥ c3kρ.

Observe that in the maximally incoherent case (ρ = O(n−1/2)),
we can pick δ = o(1), k = O((logn)−1n1/2) and logN =
O(δ−3k). Hence, our optimal embedding result applies up to
O(

√
n) as the embedding dimension. Our main result is on

fast binary embedding of finite set of points with near-optimal
embedding dimensions and is stated in the next theorem.

Theorem 2.2 Let A =RChdiag(r) ∈ Rk be a circulant pro-
jection as described above. Under the assumptions of Con-
dition 2.1, with probability 1 − exp(−c4δ3k), for all x,y ∈
{vi}Ni=1, we have that

∣k−1∥sgn(Ax), sgn(Ay)∥H − ang(x,y)∣ ≤ δ.

This result applies to arbitrary set of points; however, it
depends on the incoherence of the set ρ via Condition 2.1.
One can get rid of this dependency by applying an additional
layer of randomization. In particular, let H be a Hadamard
matrix of size n and let b ∈ Rn be a vector with independent
Rademacher entries. If n is not a power of 2, we can simply
zero-pad the vectors. Consider the map

AH =AHdiag(b) =RChdiag(r)Hdiag(b).

For this map, we have the following incoherence-free result.

Theorem 2.3 Consider the binary embedding via the opera-
tor x → sgn(AHx). There exists universal constants c,C >
0 such that following holds. Suppose

logN ≤ cδ2(logn)−1n1/3.

Then, with probability 1 − exp(−c logN), the point set
wi = Hdiag(b)vi obeys the incoherence condition with
ρ = Cδ(logn)−1/2n−1/3. Consequently, as soon as k ≥
c1δ

−3 logN , with probability 1 − exp(−c4δ3k),

∣k−1∥sgn(AHx), sgn(AHy)∥H − ang(x,y)∣ ≤ δ.

Proof This result follows from the fact that the set of points
obtained by the map vi →Hbvi has desirable geometric fea-
tures (small ρ) with high probability. In particular, combine
Theorem 2.2 with Lemma B.2 of [13]2.

Finally, the next result shows that one can optimally embed
most of the points as long as logN ≲ O(

√
n).

1c,C,{ci,Ci}i≥0, c′,C′ will be used to denote absolute constants that may
vary from line to line.

2Additional lemmas and full proofs can be found in the extended manuscript
[13]

2
6360



Theorem 2.4 Consider the binary embedding via the opera-
tor x → sgn(AHx). There exists universal constants c,C >
0 such that following holds. Suppose

logN ≤ cδ3(logn)−2n1/2.

Then, with probability 1 − n−2 (over H), there exists Sgood ⊆
{vi}Ni=1 such that

• ∣Sgood∣ ≥ (1 − c5n−2)N and

• for all v ∈ Sgood : ∥Hdiag(b)v∥`∞ ≤ ρ where ρ =
C
√
logn/n.

Consequently, as soon as k ≥ c1δ−3 logN , with probability
1 − n−2 − exp(−c4δ3k), all x,y chosen from Sgood obeys

∣k−1∥sgn(AHx), sgn(AHy)∥H − ang(x,y)∣ ≤ δ.

Proof This result follows from the fact that all but a small
fraction of the set of points obtained by the map vi →Hbvi
has desirable geometric features (small ρ) with high proba-
bility. In particular, combine Theorem 2.2 with Lemma B.3
of [13]. Pick p = n−2 in Lemma B.3.

3 Proof strategy
As mentioned in the introduction, Gaussian projections have
superior embedding performance and their properties are
rather well understood. The challenge with proposed fast
projection method is the fact that Ax do not have statistically
independent entries. This makes it difficult to rely on basic
tools available for i.i.d. random variables such as Chernoff
bound. On the other hand, observe that by construction, the
individual rows of A have i.i.d. Gaussian entries. Further-
more, a standard application of Hanson-Wright Theorem [14]
can show that if x is a diffused vector (i.e. small ∥x∥`∞ ),
entries of Ax have very low pairwise correlations. These
two properties imply that A behaves similar to a Gaussian
map up to certain extent. Our proof strategy focuses on rig-
orously characterizing this similarity and carefully using this
characterization to obtain optimal embedding bounds.

To illustrate our strategy, we will work on two unit vectors
x,y. Denote diag(r)x by xr. With this definition, observe
that

Ax =RChdiag(r)x =RCL
xrh.

where CL
xr is the circulant matrix where each new row is ro-

tated to left rather than right and first row is equal to xr∗.
The right hand side is reduced to a form which involves mul-
tiplication of a matrix and an i.i.d. Gaussian vector. Recall
that multiplication of a unitary matrix and a standard normal
vector is still standard normal. Hence, if CL

xr is approxi-
mately a unitary matrix, this would mean that entries of Ax
are approximately i.i.d. Gaussian. To put these in a more
manageable form, we introduce the following. Given x, let
si(x) be the vector obtained by circularly rotating x, namely
si(x)j = xj−i (mod n). Let the restriction R pick up the rows
{hi}ki=1 from {1,2, . . . , n}.

Definition 3.1 (Random shift vectors) Let x ∈ Sn−1 and let
r ∈ Rn be a standard Gaussian vector. Random shift vectors
of x are a set of random vectors {Xi}ki=1 such that Xi =
shi(diag(r)x) for 1 ≤ i ≤ k. Also let X = [X1 X2 . . . Xk].
Define Yi,Y in the identical manner given vector y for the
same choice of r.

With this definition, we have that

Ax =RChdiag(r)x =X∗h.

X is a randomly subsampled circulant matrix and the vector
xr that generates X is random as well. For our proof to work,
it is of interest to understand the properties of the random ma-
trix X . In a similar fashion to Gram-Schmitt orthogonaliza-
tion, let X ′

0 =X0 and for i > 0, write Xi =X ′

i +PX,i where
PX,i ⊂ span({X ′

j}j<i) and {X ′

j}j≤i are orthogonal. Define
Y ′

i ,PY ,i similarly.
Writing X = X ′ + PX , we have that X ′ has orthogonal

columns and hence X ′∗h has independent Gaussian entries
which is trivial to analyze. Here, PX is the matrix of per-
turbation error and smaller PX shall mean entries of X∗h is
closer to being independent. The following lemma character-
izes the size of the perturbation PX and helps us specify a
notion of approximate independence.

Lemma 3.2 Let Si be the subspace spanned by {Xrj}i−1j=1.
With probability 1− 4 exp(−δ2k), we have that for all 1 ≤ i ≤
k

max{∥PSi(Xi)∥`2 = ∥PX,i∥`2} ≤ c1δkρ.

While Lemma 3.2 upper bounds individual columns, to
obtain sharper results, we need to understand the matrix X as
a whole. Our main technical result provides an understand-
ing of the conditioning of X and is summarized as follows.
The proof heavily relies on earlier results of Tropp on ran-
domly subsampled subdictionaries [15]. Please see the ex-
tended manuscript for the detailed technical arguments [13].

Theorem 3.3 (Random circulant subdictionaries) Pick unit
vectors x,y ∈ Rn satisfying x∗y = 0 and ∥x∥`∞ , ∥y∥`∞ ≤ ρ.
Form a matrix M ∈ Rn×2k by constructing X,Y as de-
scribed above and setting M = [X Y ]. With probability
1− 2 exp(−δ2k) (over the generation of r and {hi}ki=1’s), we
have that

σmax(M∗M − I) ≤ Cδkρ logn.

As a side, this result implies that both X∗X and Y ∗Y are
fairly close to the identity matrix with respect to the spectral
norm. Theorem 3.3, allows us to obtain better estimates on
the impact of perturbation on the embedding error. From a
random matrix theory perspective, this result provides insight
about the conditioning of randomly subsampled randomized
circulant matrices.

Repeated applications of Theorem 3.3 yields the follow-
ing corollary which does not require the orthogonality of x
and y.
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Corollary 3.4 Let x,y be unit vectors obeying ang(x,y) = θ
and ∥x∥`∞ , ∥y∥`∞ ≤ ρ. Form a matrix M ∈ Rn×2k by con-
structing X,Y as described above and setting M = [X Y ].
With probability 1 − 6 exp(−δ2k) (over r and selection of
{Xi}ki=1’s), we have that

σmax(M∗M − Iθ) ≤ Cδkρ logn.

where Iθ ∈ R2k×2k is given by the matrix

[ Ik cos(θ)Ik
cos(θ)Ik Ik

] .

While the fundamental idea is to decouple the entries of
Ax = X∗h into a nicer i.i.d. component X ′∗h and a pertur-
bation P ∗

Xh, it is still not clear how to relate these arguments
to binary embedding. The relation becomes more clear when
we consider the implications of sign mismatch between X ′∗h
and X∗h. We already have a good understanding of X ′∗h
due to its Gaussian nature. This allows us to sharply estimate
the Hamming distance ∥sgn(X ′∗h), sgn(Y ′∗h)∥H . It also
means that, if the signs of X ′∗h and X∗h mostly match, the
problem is essentially solved. To address this, we consider
the robuster version of sign mismatch with a parameter ε > 0
by defining the following events

Ei,1 =(sgn(h∗X ′

i) ≠ sgn(h∗Y ′

i ) and ∣h∗X ′

i ∣, ∣h∗Y ′

i ∣ > ε)
and sgn(h∗Xi) = sgn(h∗Yi),

Ei,2 =(sgn(h∗X ′

i) = sgn(h∗Y ′

i ) and ∣h∗X ′

i ∣, ∣h∗Y ′

i ∣ > ε)
and sgn(h∗Xi) ≠ sgn(h∗Yi).

Here,Ei,1 andEi,2 are the robust versions of the events where
the signs associated with Xi,Yi are not consistent with the
ones associated with X ′

i,Y
′

i . Robustness is enforced by re-
quiring the products h∗X ′

i,h
∗Y ′

i to be ε away from zero.
Now observe that, in order for Ei,j’s to occur, we need

max{∣h∗PX,i∣, ∣h∗PY ,i∣} > ε i.e. the perturbation error has
to be somewhat significant. Guaranteeing small perturbation
error via Lemma 3.2 and Theorem 3.4 helps establish that
{Ei,j}ki=1 occur rarely and ∥sgn(X∗h), sgn(X ′∗h)∥H is
rather small. With these, we eventually conclude that, for all
x,y ∈ {vi}Ni=1,

∥sgn(Ax), sgn(Ay)∥H = ∥sgn(X∗h), sgn(Y ∗h)∥H
≈ ∥sgn(X ′∗h), sgn(Y ′∗h)∥H
≈ k ⋅ ang(x,y).

4 Conclusions and Open Problems
In this work, we showed that fast binary embedding with near
optimal dimensions are possible. In particular, our embedding
bounds are consistent with the state of the art results for lin-
ear embedding, indicating that fast binary embedding is fea-
sible under identical conditions to fast linear embedding such

as [16–18]. This is the first such result for fast binary em-
bedding and significantly improves over the related literature
(e.g. [7, 8]). We believe the tools developed in this work can
find broad applications in other nonlinear embedding tasks.
For instance, our argument may be used to improve the con-
centration estimates of Fastfood features [8] which is a pop-
ular fast kernel approximation technique. Our embedding re-
sult holds for finite set of points and it is of interest to extend
this work to continuous sets. A weakness of our result is the
fact that the embedding dimension scales up toO(

√
n) which

limits the number of points to logN ≲ O(
√
n). Overall, this

work opens up several research directions.

• Fast embedding in linear regime: Does optimal fast
binary embedding work with embedding dimension
O(n)? In other words, can we pick k ∼ O(n) to embed
N ∼ exp(O(k)) points? If not, is there a fundamental
bottleneck at k ∼ O(

√
n)?

• Practical considerations: Our result on circulant em-
bedding Chdiag(r) requires h and r to have Gaus-
sian entries. We believe r can have Rademacher entries
without impacting the performance. It would possibly
improve the performance as the operator v → diag(r)v
preserves the inner products when r is Rademacher.
Furthermore, it is not clear whether the incoherence as-
sumption in Theorem 2.2 is necessary. Numerical re-
sults of prior work [7, 10] indicates that the map v →
sign(Chdiag(r)v) works well which suggests that we
may not need additional randomization via Hadamard
transform. This would allow us to discard one layer of
the embedding, namely, v →Hdiag(b)v.

• General nonlinear embedding: With a minor mod-
ification of our analysis, it is possible to obtain fast
embedding bounds for a more general model f(Ax)
where f is a function that apply pointwise. The impor-
tant use cases would be to replace sgn(⋅) function with
a general function such as quantization, ReLU, sigmoid
etc [19–21]. It would also be of interest to investigate
quadratic samples arising in phase retrieval [22, 23].

• Embedding of continuous sets: Our current results
apply to finite set of points however it is of interest to
embed continuous sets such as subspaces or sparse and
low-rank manifolds. While this problem is studied for
dense Gaussian embedding matrices, we believe simi-
lar results can be obtained for fast embedding matrices
by building on this work and [7].
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