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ABSTRACT

Optimizing the selection of learning resources and practice
questions to address each individual student’s needs has the
potential to improve students’ learning efficiency. In this pa-
per, we study the problem of selecting a personalized learning
action for each student (e.g. watching a lecture video, working
on a practice question, etc.), based on their prior performance,
in order to maximize their learning outcome. We formulate this
problem using the contextual multi-armed bandits framework,
where students’ prior concept knowledge states (estimated
from their responses to questions in previous assessments)
correspond to contexts, the personalized learning actions cor-
respond to arms, and their performance on future assessments
correspond to rewards. We propose three new Bayesian poli-
cies to select personalized learning actions for students that
each exhibits advantages over prior work, and experimentally
validate them using real-world datasets.

Index Terms— contextual bandits, personalized learning

1. INTRODUCTION

In today’s classrooms, knowledge is typically passed from
teachers to students using a "one-size-fits-all" approach where
students listen to the same lectures and work on the same
homework questions. This approach naturally leads to gaps in
student knowledge, since one teaching style is not optimal for
every student in class and students have diverse backgrounds,
abilities, and goals. In such a setting, teachers often do not
have the time or resources to (i) identify specific areas that each
student needs remediation on or (ii) tailor classroom lectures
to address each student’s needs. Machine learning-driven
personalized learning systems use machine learning algorithms
to analyze student data (e.g. their graded responses) [1]. This
analysis provides estimates of each student’s knowledge in
a scalable way, which can be used to automatically create
learning schedules that are tailored to cater to the strengths
and weaknesses of each individual student.

In this paper, we focus on the problem of generating per-
sonalized learning schedules for students given their learning
history in order to maximize their future learning outcomes.
Following the setting in [2], we define a personalized learning
schedule as an alternating sequence of personalized learning

actions (PLAs) and assessments. PLAs are enrichment or re-
mediation activities intended to improve students’ knowledge
of a set of educational concepts. Examples of PLAs include
reading a textbook, watching a lecture video, and practicing
a homework question. Assessments consist of questions in-
tended to test students’ current concept knowledge level.

1.1. Contributions

We study the problem of selecting the optimal PLA for
each student to maximize the student’s performance on the
follow-up assessment. We pose this problem as a contex-
tual multi-armed bandits (MAB) problem; We estimate each
student’s prior knowledge by analyzing their responses to
questions in previous assessments using the sparse factor anal-
ysis (SPARFA) framework [1], and use them as contexts. We
use each available PLA as an arm, and use students’ responses
to questions in the follow-up assessment as rewards.

We propose three new policies to select PLAs that are
specifically adapted for binary-valued rewards (the graded stu-
dent responses). The first two, CPT and U-CPT, are based on
Thompson sampling [3]. The CPT algorithm exhibits closed-
form updates of the policy parameters, which leads to very
low computational complexity; The U-CPT policy extends
the basic Thompson sampling policy CPT to account for the
uncertainty in the contexts (estimates of their prior knowledge
states), which is of crucial importance when the number of
questions the students have previously answered is limited.
The third policy, KG, is an online knowledge gradient policy
that tries to maximize the information gained on the PLAs with
each PLA selection, and may therefore be preferable when
the policy must learn from a very small number of students
[4]. We experimentally show that the three proposed policies
achieve comparable or better performance than existing PLA
selection policies using two real-world educational datasets.

2. PROBLEM FORMULATION

In the MAB problem, a gambler is given a collection of A slot
machines (each with a single arm), that each have with a fixed
reward distribution that is unknown to the gambler. On each
play, the gambler selects an arm to play and receives a reward
independent of previous plays. The objective is to select arms
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to play such that the expected cumulative reward over N plays
is maximized. The key to the MAB problem is to strike a
balance between exploration (finding the arm with the highest
expected reward) and exploitation (capitalizing by selecting
the arm with the highest observed reward so far).

The contextual MAB framework studies the MAB problem
when additional context information is available to the player,
and uses it to select an arm to play. The context contains
information on each arm and/or the current play.

2.1. PLA Selection as a Contextual MAB Problem

We formulate the PLA selection problem using the contextual
MAB framework as follows. Let there be N total students and
A total PLAs. After completing the selected PLA, each student
takes a follow-up assessment consisting of Q questions, each
with full credit points si, i = 1, . . . , Q, which we observe
as rewards. PLA selections are completed sequentially, so
each student corresponds to a "play" in the MAB framework.
The graded responses of student j to question i in the follow-
up assessment after taking PLA a is denoted as Y ai,j , where
Y ai,j = 1 denotes a correct response and Y ai,j = 0 denotes an
incorrect response.

We assume we are given cj , a K-dimensional vector that
encodes student j’s prior knowledge on every concept; cj
is obtained from student j’s graded responses to previous
assessment questions. Although in this paper we estimate
cj using SPARFA [1], cj can also be estimated using any
alternative approach, e.g., item response theory [5].

We model the graded student responses on the follow-up
assessment, Y ai,j , as Bernoulli random variables where

p(Y ai,j = 1|wa
i ) = Φ(cTj wa

i ). (1)

Here, Φ(·) denotes a link function; the two commonly
used link functions are the inverse logit link function
Φlog(x) = 1

1+ex and the inverse probit link function Φpro(x) =∫ x
−∞N (t; 0, 1)dt where N (t; 0, 1) denotes the standard nor-

mal distribution. The parameter we are interested in estimating
through our measurements is wa

i , a K-dimensional parame-
ter vector indexed by question i and PLA a that we assume
governs students’ responses to each question in the follow-up
assessment after completing each PLA.

3. PLA SELECTION POLICIES

In this section, we detail the PLA selection policies, including a
previously developed policy and three new policies. The three
new policies we develop use the inverse probit link function to
model student responses.

3.1. A-CLUB

We have previously proposed a contextual bandits policy,
asymptotic contextual logistic upper confidence bound (A-

Algorithm 1: CPT
Input: A set of student concept knowledge state

estimates, cj , j = 1, 2, . . . , N , parameter σ2

Output: PLA aj for each student
ma
i ← 0, Va

i ← σ2I, ∀ i, a
for j ← 1 to N do

for a← 1 to A do
Sample “wa

i ∼ N (ma
i ,V

a
i ), ∀ i.

aj ← arg maxa
∑Q
i=1 siΦpro(cTj “wa

i )

Update m
aj
i and V

aj
i , ∀ i, according to (2) and (3)

CLUB), for the task of PLA selection. A-CLUB leverages the
asymptotic normality of the maximum likelihood operator to
build a confidence ellipsoid around the maximum likelihood
estimates of wa

i , the parameter vector of each question and
each PLA. Using this information, A-CLUB arrives at an up-
per confidence bound of the expected total credit of a student
on the follow-up assessment after taking each PLA, and selects
the PLA with the highest upper confidence bound. Details of
this algorithm can be found in [2, Alg. 2].

3.2. CPT: Contextual Thompson Sampling

We now develop a new Bayesian PLA selection algorithm
using Thompson Sampling [3, 6]. In each play, a sample of
wa
i is generated by sampling from its posterior distribution

[7], and the PLA with the highest expected sample reward is
selected. We dub this policy as contextual probit bandits with
Thompson sampling (CPT). The reason that we use the inverse
probit link function is that it enables a more computationally
efficient rule to update the posterior distribution of wa

i than
the Laplace approximation technique used for the inverse logit
link function [8]. CPT is also more computationally efficient
than A-CLUB, which solves a set of optimization problems at
each update [2].

We put a prior distribution on wa
i as N (m0,V0). Conse-

quently, the posterior distribution on wa
i can be approximated

by N (m,V) after observing a graded response Y ai,j , where

m = m0 +
(
2Y ai,j − 1

) V0cj√
1 + cjTV0cj

N (z)

Φpro(z)
, (2)

V = V0 −
V0cjcj

TV0

1 + cjTV0cj

Å
z +

N (z)

Φpro(z)

ã N (z)

Φpro(z)
, (3)

z =
(
2Y ai,j − 1

) mT
0 cj√

1 + cjTV0cj
. (4)

The prior parameter m0 is initialized as an all-zero vector
0, and V0 is initialized as σ2I, where I denotes the identity
matrix. Details of this approximation can be found in [9].
Algorithm 1 summarizes the CPT policy.
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Algorithm 2: U-CPT
Input: A set of maximum likelihood-type student

concept knowledge state estimates, µj and the
uncertainty of these estimates Σj ,
j = 1, 2, . . . , N , parameter σ2

Output: PLA aj for each student
ma
i ← 0, Va

i ← σ2I, ∀ i, a
for j ← 1 to N do

for a← 1 to A do
Sample “wa

i ∼ N (ma
i ,V

a
i ), ∀ i.

aj ← arg maxa
∑Q
i=1 siΦpro(

cT
j wa

i√
1+(wa

i
)T Σjwa

i

)

Update m
aj
i and V

aj
i , ∀ i, using the Laplace

approximation

3.3. U-CPT: CPT with Uncertain Contexts

Since the student contexts, i.e., the student knowledge states,
are estimated from the students’ previous assessments, the
estimates can be inaccurate, especially when the number of
questions a student answers in previous assessments is small.
We propose a new policy, U-CPT, to tackle uncertainty in the
contexts, a previously largely unexplored aspect in contextual
bandits literature that arises in the current application.

We assume that estimates of the context vectors are nor-
mally distributed as cj ∼ N (µj ,Σj). The mean parameter
µj is simply chosen as the maximum likelihood-type estimates
obtained from SPARFA, while the covariance parameter Σj

can be approximated as the inverse of the Fisher Information
matrix using the method described in [2, Sec. 3.2]. With this
notation, the probability that student j answers question i in
Assessment 2 correctly after taking PLA a can be written as

p(Y ai,j = 1|wa
i ) =

∫
cj

P (Y ai,j |cj ,wa
i )P (cj |µj ,Σj)

=

∫
Φ(cTj wa

i )N (cj ;µj ,Σj)dcj

= Φ(
cTj wa

i√
1 + (wa

i )TΣjwa
i

), (5)

where the last identity comes from the derivation of (2) (see
[9] for details). Intuitively, when uncertainty in the context
estimates is low, U-CPT reduces to CPT. When uncertainty is
high, the denominator term will be large and thus results in the
predicted success probability p(Y ai,j = 1) for each PLA are
close to each other, decreasing the impact of the contexts.

U-CPT operates in the same manner as CPT, except that we
use the Laplace approximation [8] to update m

aj
i and V

aj
i , ∀ i,

since closed-form updates no longer exist due to the presence
of the variable wa

i in the denominator of (5). Algorithm 2
summarizes the U-CPT policy.

3.4. KG: Online Knowledge Gradient

We now develop a third PLA selection policy using the knowl-
edge gradient (KG) method [10]. We use the same underlying
probabilistic model and the same PLA parameter estimation
strategy as CPT.

In the offline KG policy, in each play, we select the arm
that provides the greatest expected increase in a quantity
termed value (see [11] for further details). Specifically, for
the PLA selection problem, we define the value of student j
answering question i as the probability that they will respond
to this question correctly after taking the optimal PLA, i.e.,
Vi,j = maxa Φpro(cTj wa

i ). The KG of a particular PLA a is
the expected increase in value for a future student j + 1 with
the same concept knowledge, given that we select PLA a for
student j. It is formally defined as va,ji = EY a

i,j
[Vi,j+1−Vi,j ],

where Vi,j+1 is a random variable representing the possible
updated values for wa

i based on the response observed for stu-
dent j after taking PLA a. See Alg. 3 for the implementation
details, and refer to [4] for the full derivation of the KG for
binary observations. Note that we drop the constant term Vi,j
since it does not affect the location of the maximum value.

The offline KG policy only selects arms to maximize
the knowledge gained from each single measurement, which
comes at a price of sacrificing short-term rewards. To adapt the
KG policy for the MAB problem, which aims to maximize the
cumulative observed reward, we use an online version of the
KG policy. The online KG policy balances between providing
an optimal PLA for student j (exploitation) and improving
PLA selection for future students (exploration). We formally
state the policy for PLA selection for student j as

aKG,j = arg max
a

Q∑
i=1

si(Vi,j + (N − j)va,ji ). (6)

Note that the term (N − j)va,j approaches 0 as j increases.
Although this policy assumes a finite value for N , it is also
possible to derive a similar policy that uses a tunable parameter
rather than (N − n) to balance exploration and exploitation,
when we have no knowledge of the number of students [12].
Algorithm 3 summarizes the online KG policy.

4. EXPERIMENTS

In this section, we test the performance of the CPT, U-CPT,
and KG policies on improving the students’ learning outcomes
using two real-world educational datasets, and compare their
performance to A-CLUB.

We use two datasets, Dataset 1 and 2, that were recorded
from two high school classes: AP Physics and Biology. Both
datasets consist of the binary-valued graded responses of each
student to questions in their homework assignments. Let N
denote the number of students. After finishing Assessment 1,
students were then individually assigned a question at random
from a set of A questions, which we denote as the set of PLAs.
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Algorithm 3: KG
Input: A set of student concept knowledge state

estimates, cj , j = 1, 2, . . . , N , parameter σ2

Output: PLA aj for each student
ma
i ← 0, Va

i ← σ2I, ∀ i, a
for j ← 1 to N do

for a← 1 to A do
for i← 1 to Q do

Define pa,±i = Φpro(cTj (±ma
i ))

Let w̃κ be the solution to (2) with Y = κ

Let Ψ+ = maxw′ Φpro(cTj w′)

where w′ = {ma′

i }a′∈A\a ∪ w̃1

Let Ψ− = maxw′ Φpro(cTj w′)

where w′ = {ma′

i }a′∈A\a ∪ w̃0

Calculate va,ji = pa,+i Ψ+ + pa,−i Ψ−

aj ← arg maxa
∑Q
i=1 si(p

a,+
i + (N − j)va,ji )

Update m
aj
i and V

aj
i , ∀ i, according to (2) and (3)

Students later completed the same homework set, Assessment
2, which consisted of Q questions. Note that all questions
in this dataset have the same amount of credit (si = 1 for
i = 1 . . . Q). We have N = 20, A = 2, and Q = 11 for
Dataset 1 and N = 57, A = 4, and Q = 6 for Dataset 2.

4.1. Experimental Setup and Evaluation Method

We formulate the PLA selection problem for this experiment as
follows: Given students’ estimated concept knowledge based
on their responses to questions in Assessment 1 (contexts),
our objective is to select a homework question (a PLA) to
give each student out of the set of A available questions to
maximize their performance on Assessment 2 (reward). We
set K, the dimension of the concept knowledge vectors, to 3.1

We tuned the algorithm parameters for each dataset to achieve
the best performance.

We first generate estimates of the student context vector,
cj , from SPARFA using the students’ graded responses in As-
sessment 1. We then run each policy using these estimated
context vectors. Since the dataset was collected in an “offline”
way using a random PLA selection policy, we use the unbiased
offline evaluation method [13] to evaluate the performance of
the policies. We do so by using only students whose actual
PLA selection matches those selected by the policies. More-
over, since MAB policies make PLA selections sequentially
for each student, their performance depends on the order of
the incoming students. Therefore, we randomly permute the
ordering of students and average our results over 2000 random
permutations.

1In our experiments, we observed that the choice of K has minimal impact
on the performance of the policies as long as K � L, where L is the number
of questions in Assessment 1.

(a) Dataset 1 (b) Dataset 2

Fig. 1. Average student credit on Assessment 2 vs. number of
students the PLA selection policies train on for both datasets.
Across all four policies, average student credit increases as the
number of students increases.

4.2. Results and Discussion

Figure 1 plots the performance of each PLA selection policy
over the number of students in the training set. We measure
performance by the average student credit on Assessment 2
that is normalized to be in [0, 1]. The average credit for the
policy that randomly selects PLAs is 0.791 for Dataset 1 and
0.573 for Dataset 2. Given more student data to train on, all
four of our PLA selection policies achieve higher average test
credits than the random policy.

While A-CLUB achieves better performance over the three
Bayesian policies in Dataset 1, the results for Dataset 2 indi-
cate that when the number of students in the training set is
small (e.g., a typical high school class has no more than 20-
30 students), the Bayesian policies (particularly KG) achieve
superior performance. This suggests that the optimal policy
is dataset-specific, and there may not be a single policy that
works best for all classroom settings.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed three new policies for selecting
personalized learning actions for students given estimates of
their prior knowledge, in order to maximize their performance
on a follow-up assignment. We validated our results using two
real-world educational datasets and observe improvements in
the average student credit as the policies train on data from
more students. Our results demonstrate that our three new poli-
cies achieve comparable performance on improving students’
future performance to existing contextual bandit policies for
the task of selecting personalized practice questions.

Possible avenues of future work include i) extending the
ideas of uncertainty in contexts to other algorithms and theo-
retically investigating its impact on regret, ii) exploring the cor-
relation between the rewards of each PLA and each question,
and iii) employing a Markov decision process [14] framework
to extend the current work from selecting a single personal-
ized learning action to crafting a fully personalized learning
schedule for each student throughout the duration of a course.
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