PRACTICAL MATLAB EXPERIENCE IN LECTURE-BASED
SIGNALS AND SYSTEMS COURSES

Peter Milder and Monica F. Bugallo

Department of Electrical and Computer Engineering
Stony Brook University, Stony Brook, NY 11794-2350
{peter.milder,monica.bugallo } @stonybrook.edu

ABSTRACT

In this paper we report our efforts to streamline the curricu-
lum of a lecture-based course on signals and systems with
exercises using the Matlab computing environment. We use a
computer framework to generate individualized variations of
problems, which are assigned to teams of students as well as
to individual students. Feedback from students revealed that
the new components were helpful for better understanding of
the materials and hold strong promise in our new approach to
interactive and hands-on learning. Furthermore, we discuss
an auto-grading system that will provide students with instan-
taneous feedback and ease the task of evaluating projects in
the next offering of the course.

Index Terms— Hands-on exercises, signals and systems,
Matlab, computer-generated problems, auto-grading

1. INTRODUCTION

At Stony Brook University, Deterministic Signals and Sys-
tems is a traditional introduction to signal processing, cover-
ing continuous- and discrete-time signals and systems in the
time and frequency domains. This is a required course for un-
dergraduate students majoring in Electrical Engineering (EE)
or Computer Engineering (CE). In Fall 2015, 108 students
enrolled in the course, as described in Table 1.

Traditionally, this course has been taught at Stony Brook
as a lecture-only course, without a lab or programming com-
ponent. This format has offered students the possibility of
gaining a thorough theoretical understanding of the material,
but various elements of the curriculum proved difficult to un-
derstand without practical exercises. Moreover, with the cur-
rent lecture-only offering, hands-on practical skills such as
Matlab were pushed to later courses such as communication
systems or DSP, which burden those courses as students en-
tered without sufficient experience using computer tools and
technologies for signal processing and related areas. Finally,
many similar courses at other institutions offer computer lab
components associated with the lectures [1, 2, 3, 4].

This work has been supported by the National Science Foundation under
Award CCF-1617986 (M. F. Bugallo).

978-1-5090-4117-6/17/$31.00 ©2017 IEEE

6339

Year Major
Sophomore 34 EE 59
Junior 41 CE 29
Senior 30 Biomed. Eng. 7
Other 3 Other 13

Table 1. Student breakdown for Fall 2015.

Motivated by these reasons, we sought to include expe-
rience with Matlab in the form of basic exercises as a first
step toward including a permanent lab component. The goal
was to provide students with practical hands-on experiences
that could be done in a largely self directed manner, to keep
within practical constraints of the course. We accomplished
this through a combination of careful design of assignments
and the use of technology.

In this paper, we describe our contributions to this effort.
First, we created a new set of original Matlab exercises asso-
ciated with the theoretical course topics. Second, we built a
computer framework to automatically generate unique varia-
tions of lab problems for students. Third, we are prototyping
an automatic grading system that will provide students with
instantaneous feedback on their work and will ease the evalu-
ation process.

The rest of this paper is organized as follows. Section 2
describes the new lab components, as well as our mechanism
for providing computer-generated problems and an automated
grading system that we are developing. In Section 3, we dis-
cuss student performance and feedback, and we explain how
we are correspondingly adapting these activities in future of-
ferings. Lastly, Section 4 offers concluding thoughts.

2. NEW COURSE DESIGN

This section describes how we structured and supported as-
signments, as well as the technological aspects of our ap-
proach: automatically generating unique problem instances
and an ongoing effort to build an automated system to evalu-
ate student work and provide feedback.

ICASSP 2017

2.1. Hands-on Labs and Assignments

The Fall 2015 semester marked our first trial of the new
course material. We created four assignments, which stu-
dents were encouraged to complete in groups of two.

Labs 1 and 2: Tutorial. First, we began with two tutorial
assignments designed to introduce students to Matlab within
the first two weeks of the course. These were the only as-
signments structured as a traditional lab, when students were
required to attend a specific session. For each week, we cre-
ated explanatory documents covering relevant topics and pre-
senting simple exercises. In week 1, we covered: how to in-
teract with Matlab, simple mathematics, arrays and matrices,
plotting signals, and the use of functions and scripts. Week
2 covered: the representation of signals as arrays in Matlab,
writing scripts to generate signals, and working with complex
numbers. In each of the first two weeks, students signed up
to attend a 90 minute session where they would complete the
assignment under the supervision of course staff.

Lab 3: Signal Transformation. Next, students were
given an assignment to reinforce concepts related to the math-
ematical manipulation of signals and system properties. First,
students read a short tutorial providing examples for writing
code for time-based transformation of signals; this discussion
connected the topic closely to concepts from class. Then, we
provided each team of students with a different signal z[n]
and a mathematical description of a system. (The specifica-
tion of the unique signal and transformations were automati-
cally generated using the framework described below in Sec-
tion 2.2.) Each team was tasked with writing a Matlab script
to generate x[n], manipulate it based on the system described,
and plot the results. Lastly, each team demonstrated that their
system was not time invariant with a counter-example.

Lab 4: LTI Systems. The final assignment related to
discrete-time linear time invariant (LTI) systems. This rein-
forced knowledge of the DTFT, convolution, and the concept
of the frequency response of a system. In this assignment,
students were given formulas specifying a discrete-time sig-
nal z[n] and the impulse response h[n] of a discrete-time LTI
system. Students were tasked with examining the input and
output of this system in both the time and frequency domains.
First, they wrote code to generate 2:[n] and h[n| signals based
on mathematical specifications. Then, they used convolution
to compute the system’s output in the time domain. Next,
they used the DTFT to examine the frequency representation
of the signals, and to verify that taking the DTFT of the out-
put signal was equal to taking the product of the DTFT of the
input and the system’s frequency response. As in Lab 3, each
team of students was provided with a unique instance of the
problem: in this case, a unique x[n] and h[n].

2.2. Computer-Generated Problems

To facilitate self-directed Matlab assignments, we developed
a framework to enable automated generation of unique in-

generate F» problem

| LaTeX |
source

generate
inputs

compile
LaTeX

compute
solution
H» solution

validate

Fig. 1. Template-based framework for automatic generation
of Matlab problems.

stances of Matlab problems, along with their solutions. This
allows each team of students to solve a different variation
of the problem than other classmates solved, and it can give
students the ability to continue to practice by generating
new problems. Because we additionally generate the solution
(e.g., the final graph of the result the student’s function should
create), instructors can choose to distribute solutions (allow-
ing students to work toward the correct output) or keep them
for grading. Alternatively, an instructor could take advan-
tage of the automated nature of the system and create several
problems per student, distributing some with solutions (for
practice) and some without (for evaluation).

Figure 1 shows a high-level view of our problem genera-
tor framework. The system is based on templates—to create
a new assignment, the instructor must provide a function for
each step of the framework. The modular nature of this sys-
tem means it is easy to develop or share a library of different
assignments. First, the system generates a set of inputs that
will be used for a particular instance of this problem. The
instructor provides a list of variables to generate as well as
constraints on the randomization process (e.g. “a should be
a random integer between —10 and 10, and b should be no
more than 4 above or below a”). Based on the specification,
our system uses Matlab’s built-in random number generation
functions to set variables’ values. A set of random variables
represents a specification of one customized instance of the
given assignment.

Next, the system computes the problem’s solution; this
represents the work that the student will when completing the
assignment. To accomplish this, the instructor provides the
framework with a function that takes as input the variables de-
scribed above and solves the desired problem. Additionally,
the instructor is able to specify optional validation functions
that will check the inputs or solution. (For example, one can
specify checks to ensure that if the solution becomes trivial
or uninteresting, a new set of input parameters will be cre-
ated.) This is implemented simply as a series of conditional
statements the instructor can provide.

Lastly, the values of parameters (and any desired Mat-
lab graphs) are plugged in to an instructor-provided LaTeX
template, which is compiled to a PDF. Our framework en-

6340

parameter(s) potential values

a,b,c 10,11,...,20

w1 /10,7 /5,0r 37/10

wa w1 + (7/10,7/5, 0or 37/10)
ws wo + (/10,7 /5, 0r 37/10)
g,h Oorl

Table 2. Parameters generated for example assignment.

ables this by automatically generating LaTeX macros for the
random variable values; the instructor then writes a template
that uses those macro names. The system can generate sepa-
rate PDFs for the problem and its solution, or it can combine
them into a single document. Additionally, functionality is
implemented to allow the instructor to provide a list of names
or identification numbers; for each item in the list, a unique
problem and solution will be produced, with the identifier op-
tionally included at the top of the document and in the gener-
ated file name.

Example. To illustrate, we describe how this sys-
tem functions for the Lab 4 assignment discussed in Sec-
tion 2.1. In this assignment, each team is given specifi-
cations of an input signal z[n] and the impulse response
of an LTI system h[n|. Students are asked to find and
plot time domain signals z[n], h[n], and y[n] (the output
of the system), as well as frequency domain representations
X (e7%), H(e?*),and Y (e7“), using the discrete-time Fourier
transform. To create an instance of the problem, we first
generated constrained random numbers according to the con-
straints in Table 2. These specifications are added into the
system in the form of a Matlab function. Then, the signal
x[n] is generated according to

z[n] = acos(win) + bsin(wan) + ccos(wsn).

This results in a signal with three frequency components w1,
wo, and ws. Then h[n| is chosen as the impulse response of
a low-pass or high-pass filter (depending on the value of g)
with cutoff-frequency halfway between w; and w» or halfway
between wy and w3 (depending on the value of h).

For each problem instance, a set of values is generated;
this set is passed to code that performs the tasks students are
asked to accomplish. In this example, that means generat-
ing Matlab representations of the signals x[n] and h[n] based
on the specification, using Matlab’s convolution function to
compute the system’s time-domain output y[n], using a DTFT
to compute the frequency representations of each signal, and
creating plots for these six signals following a prescribed for-
mat. We provide a Matlab function that the “compute solu-
tion” block uses to perform these steps and generate the re-
sults. All parameters and results are then sent to a block that
produces the LaTeX source by connecting these values to a
template that we created. This step additionally produces im-
age files of the solution graphs which are embedded in the

6341

z[n] = 13 cos (0.77n) + 15sin (—0.67n) + 18 cos (0.37n)

sin(0.657n :
% , ifn#0
hin] = 4
0.65, ifn=20
0 111111111: x[n] abs(DTFT of x[n])
20 8000
6000
0
4000
-20 2000 ‘ ‘
-40 0
0 200 400 600 800 1000 2 0 2
1 h[n] abs(freq. response)
1
05 A
0.5
A A
0 VY
0.5 0
50 0 50 2 0 2
abs(DTFT of y[n])
20 8000
6000
0
4000
20 2000
0

0 200 400 600 800 1000 -2 0 2

Fig. 2. Example of a generated problem and solution.

LaTeX. Lastly, the LaTeX sources are compiled to produce
PDFs of the problem instance (for the student) and the solu-
tion (for the answer key). An example from the answer key is
provided in Figure 2. For this problem (and others we tried),
the entire process of generating parameters, computing the
results, exporting the graph and LaTeX, and creating the final
PDF takes under two seconds; problems and handout material
for an entire class can be produced in just minutes.

2.3. Auto-Grading System

A natural next step is to extend the problem generation frame-
work previously described into a system that automatically
grades assignments, often called an “Auto-grader.”” Auto-
graders aim to provide students and instructors with auto-
mated evaluation and feedback of student work [5, 6, 7, 8].
By allowing students to immediately receive feedback, auto-
graders can encourage students to iterate over multiple trials,
improving the quality of their work [6]. Also related is [9],
which describes recent offerings of undergraduate and grad-
uate signal processing courses in the form of massively open
online courses.

We are currently prototyping a web-based auto-grading
system for Matlab code. Our prototype auto-grader begins
with a web-based front end, built using Ruby on Rails [10].
Each student has an account where they can track their
progress and download assignment files. When a student
starts an assignment, the system first generates a problem
instance (Section 2.2), and it also provides the student with
a customized “checker” as a protected Matlab .p file. The
checker contains a function that inspects the outputs of a

Lab 1
95.2%

Lab 2
97.1%

Lab 3
84.8%

Lab 4
93.3%

Table 3. Percentage of students who successfully completed
each lab assignment.

student’s work and gives feedback. On completion of the
assignment, the checker can send a message to our server to
indicate success. We note that it may be possible for students
to reverse-engineer the checker code to “short-circuit” the
checks; for a safer approach, we plan to enable an option
where checking is performed directly on the server.

We are currently constructing this prototype and plan to
test it with the class during the next year. After development
and testing, we intend to make this system available to faculty
at other institutions.

3. RESULTS AND FEEDBACK

In this section, we first describe the students’ performance on
the assignments, and then we discuss student feedback given
in anonymous end-of-semester surveys and how this feedback
has influenced our future plans.

3.1. Student Performance

We assess student performance through the successful com-
pletion of the lab assignments, and through performance on
small questions included on written quizzes. Table 3 shows
the percentage of students who correctly completed each lab
assignment. First, we note that Lab 1 and Lab 2 were com-
pleted in the presence of course staff, who were available
to help and check each teams’ results, so the few instances
where these assignments were not successfully completed
were caused by carelessness or incomplete work.

The success rate was lower for Lab 3. By examining
these submissions, we see that the most common problem
was where teams would produce an incorrect implementa-
tion of the system (e.g., shift incorrectly), but fail to notice
this when checking results by hand on paper. That is, be-
cause of students’ incorrect understanding of the underlying
mathematics, they were unable to identify mistakes in their
Matlab functions. We view this result as strong motivation
for producing the prototype auto-grading system described in
Section 2.3; in these instances, student learning would be im-
proved with immediate feedback. By programming the auto-
grader to recognize these types of common mistakes, we will
carefully tailor the system’s feedback to help identify and cor-
rect the problem. For Lab 4, we observed similar patterns,
however to a smaller extent.

We also included two short written questions related to
this material on quizzes, in order to evaluate how well stu-
dents retained the knowledge they gained from completing

these assignments. While completing the lab assignments,
students were aware that questions of this type would be in-
cluded on the exam. This also served to discourage students
from over-relying on their partners in completing the assign-
ment. Both questions presented students with a short piece
of Matlab code related to a lab assignment, and asked them
to explain the code’s function. For the first question, 30.5%
of students answered the question completely correctly, with
an additional 56.2% of the students answering partially cor-
rectly. The second question was solved completely correctly
by 40.1% of students and partially correctly by an additional
38.1%.

3.2. Feedback and Future Plans

At the end of the term, Stony Brook solicits course feedback
from students in the form of course evaluations. Student com-
ments related to this material were almost exclusively favor-
able, falling into two classes of comments: (1) positive com-
ments about the Matlab assignments, and (2) suggestions that
more Matlab work would be valuable. Additionally, one stu-
dent commented that the knowledge gained in the Matlab as-
signments was particularly helpful in finding an internship.
Only one student had a critical comment about the assign-
ments, fairly pointing out that the timing of the assignments
could be adjusted to integrate more closely with the theoreti-
cal material.

Our observations of student performance and feedback
have led us toward several adjustments in our (current ongo-
ing) second offering of this material. First, the types of prob-
lems students encountered (particularly in Lab 3 as described
above) strongly suggest that students would benefit from the
automatic feedback and guidance that will be provided by the
auto-grading system we are developing. Second, we are in-
creasing the number of Matlab exercises, and rather than con-
centrating the material into four larger assignments, we will
assign more smaller problems. Third, in order to more tightly
integrate Matlab into the course, we are including these as-
signments as portions of weekly homework assignments.

4. CONCLUSIONS

In this paper we discussed our efforts to include practical
Matlab experience in a lecture-based Signals and Systems
course. The new educational components consist of program-
ming activities for teams of students, including unique indi-
vidual problems that we created using a Matlab-based gen-
erator we designed. Feedback from students in the form of
surveys and their answers to quiz questions indicated that the
added components help in better understanding of the materi-
als, and their comments provide us suggestions for improving
the new assignments. Finally, we described our efforts to cre-
ate an automated grading system that we will use to provide
students with instantaneous feedback.

6342

5. REFERENCES

[1] Edward W. Kamen and Bonnie S. Heck, Fundamentals
of signals and systems: using the Web and MATLAB,
Prentice Hall, 2000.

[2] Virginia Stonick and Kevin Bradley, Labs for Signals
and Systems using MATLAB, Brooks/Cole Pub. Co.,
2000.

[3] Won Young Yang, Signals and Systems with MATLAB,
Springer-Verlag, 2009.

[4

[}

Luis F. Chaparro, Signals and Systems using MATLAB,
Academic Press, 2010.

[5] Garvit Juniwal, Alexandre Donzé, Jeff C. Jensen, and
Sanjit A. Seshia, “CPSGrader: Synthesizing temporal
logic testers for auto-grading an embedded systems lab-
oratory,” in Proceedings of the 14th International Con-
ference on Embedded Software - EMSOFT ’14. 2014,
ACM Press.

[6] Mark Sherman, Sarita Bassil, Derrell Lipman, Nat Tuck,
and Fred Martin, “Impact of auto-grading on an intro-

6343

(7]

(8]

[9]

ductory computing course,” Journal of Computing Sci-
ences in Colleges, vol. 28, no. 6, pp. 69-75, 2013.

Ge Yu, Libin Hong, and Lei Sheng, “A web-based ex-
amination and evaluation system for computer program-
ming,” in Proceedings of the Sixth IEEE International

Conference on Advanced Learning Technologies. aug
2006, IEEE.

Stephen H. Edwards and Manuel A. Perez-Quinones,
“Web-CAT: Automatically grading programming as-
signments,” in Proceedings of the 13th Annual Con-
ference on Innovation and Technology in Computer Sci-
ence Education, New York, NY, USA, 2008, ITiCSE
08, ACM.

Thomas A. Baran, Richard G. Baraniuk, Alan V. Op-
penheim, Paolo Prandoni, and Martin Vetterli, “MOOC
adventures in signal processing: Bringing DSP to the
era of massive open online courses,” IEEE Signal Pro-
cessing Magazine, vol. 33, no. 4, pp. 62-83, 2016.

[10] “Ruby on Rails,” http://rubyonrails.ozrg.

