
BSMCCA: A BLOCK SPARSE MULTIPLE-SET CANONICAL CORRELATION ANALYSIS
ALGORITHM FOR MULTI-SUBJECT FMRI DATA SETS

Abd-Krim Seghouane, Asif Iqbal and Nandakishor Desai

Department of EEE
Melbourne School of Engineering
University of Melbourne, Australia

ABSTRACT
Multiple-set canonical correlation analysis (mCCA) is a gen-
eralization of canonical correlation analysis (CCA) to three
or more sets of variables. It aims to study the relationships
between several sets of variables and it subsumes a number
of interesting multivariate data analysis techniques as special
cases. The quality and interpretability of the mCCA compo-
nents are likely to be affected by the usefulness and relevance
of each set of variables. Therefore, it is an important issue to
identify each set of significant variables that are active in the
relationships between sets. In this paper mCCA is extended to
address the issue of variable set selection. Specifically a block
sparse multiple set canonical correlation analysis (BSmCCA)
algorithm is proposed to combine mCCA with ℓ2-norm type
penalty in a unified framework. Within this framework sets of
variables that are not necessarily relevant are removed. This
makes BSmCCA a flexible method for analyzing for Multi-
Subject functional magnetic resonance imaging (fMRI) data
sets. The performances of the proposed BSmCCA algorithm
are illustrated through on block design paradigm finger taping
fMRI datasets.

Index Terms— Multiple-set canonical correlation anal-
ysis, fMRI, penalized rank one approximation, variable set
selection.

1. INTRODUCTION

A number of different approaches have been proposed for the
study of brain function through the analysis functional mag-
netic resonance imaging (fMRI) data sets. These approaches
can be broadly divided into two main classes: model-based
or data-driven. Model-based methods through the general
linear model (GLM) [1] have been widely used. They use the
a priori knowledge about the properties of the data; i.e.; the
hemodynamic response function (HRF) and the experimen-
tal paradigm; i.e.; the stimulus function, to investigate the
goodness-of-fit of the model and make inferences about re-
gional brain activities. The use of these methods can however
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be limited for a number of reasons among them the absence
of experimental paradigm; when studying resting state or nat-
uralistic paradigms such as continuous listening or watching
a movie.
Data-driven methods have also been successfully applied to
fMRI data analysis. Among the justification for their suit-
ability for fMRI data analysis is the minimization of the as-
sumptions on the underlying structure of the problem. These
methods mainly try to decompose the observed data based on
a factor model and a specific constraint. Different constraints
have led to different data-driven methods. The maximum
variance constraint has led to principal component analysis
(PCA) [2], the independence constraint has led to spatial ICA
(sICA, for the format of the data described above) and tem-
poral ICA (tICA) [3] and the sparsity constraint has led to
dictionary learning [4].
The maximum correlation constraint which leads to canoni-
cal correlation analysis (CCA) [5] has also been successfully
used for fMRI data analysis. It has for example been used to
find latent sources in single subject fMRI data by taking ad-
vantage of the spatial or temporal autocorrelation in the data
[6] or improve the specificity and sensitivity of dictionary
learning methods for fMRI by accounting for the autocorrela-
tion in the fMRI signals [7, 8]. Its extension to multiple data
sets, termed multiset canonical correlation analysis (mCCA)
[9] has also successfully been used in association with other
methods for the analysis of multiple fMRI data sets. It has for
example been successfully used in conjunction with dictio-
nary learning for multi-subject fMRI data analysis in [10] and
in conjunction with ICA to maintain the correspondence of
the source estimates across different subjects in [11, 12, 13].
When working with multi-subjects data sets, the general
canonical components obtained using the standard mCCA in-
volves all the individual subjects data sets as mCCA doesn’t
perform group variable selection. This makes it difficult to
interpret these components without using subjective judg-
ment. To ease this drawback of mCCA, a new method called
block sparse mCCA (BSmCCA) is introduced in this paper.
This method can be seen as a generalization of sparse canon-
ical correlation analysis to three or more sets of variables.
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BSmCCA combines the power of multi-block data analysis
of mCCA and the interpretability of group variables selection
[14][15]. Considering that some data sets or group of vari-
ables may be irrelevant or useless, the objective of BSmCCA
is to find linear combinations of block variables (block com-
ponents) such that the block components that are assumed to
be connected are highly correlated.

2. BACKGROUND: CCA AND MCCA

2.1. Canonical correlation analysis: CCA

CCA is a standard approach for studying the relationships be-
tween two sets of random variables. Given two random vec-
tors x = (x1, ..., xp)

⊤ and y = (y1, ..., yq) and suppose n i.i.d
samples of x and y denoted by X ∈ Rn×p and Y ∈ Rn×q , re-
spectively, have been collected. Assuming that the columns
of both X and Y have been centered and scaled, CCA aims
to find two directions of projection a1 ∈ Rp and b1 ∈ Rq so
that

(a1,b1) = arg min
a1,b1

a⊤1 Σxyb1

subject to a⊤1 Σxxa1 = 1 and b⊤
1 Σyyb1 = 1 (1)

where Σxx, Σyy and Σxy are covariance and cross-covariance
matrices. The vectors a1 and b1 are called the first pair of
canonical vectors while the variables a⊤1 X, b⊤

1 Y are called
the first pair of canonical components and ρ1 = a⊤1 Σxyb1

is referred to as the first canonical correlation. Given d ≤
min(rank(X,Y)), d of such canonical vectors A ∈ Rp×d

and B ∈ Rq×d are obtained using a deflationary approach
with the following additional constraints, first

A⊤ΣxxA = B⊤ΣyyB = Id (2)

which traduces the none correlation of the canonical com-
ponents, these components are zero mean and unit variance.
Second

A⊤ΣxyB = R = diag(ρ1, ..., ρd) (3)

which traduces the correlation of the corresponding canonical
components only. The closed form solutions for A and B ob-
tained as the solution of a constrained optimization problem
using Lagrange multipliers results in the first d eigenvectors
of Σ−1

xxΣxyΣ
−1
yy Σyx and Σ−1

yy ΣyxΣ
−1
xxΣxy respectively. CCA

results in vectors a and b that are not sparse, and these vec-
tors are not unique if p and q exceeds n. In applications where
p and q are large , one possible interest is in finding projec-
tions vectors that leads to high correlation but that are also
sparse [16][17][18]. This is realized by imposing a sparsity
constraint to (1).

2.2. Multiset Canonical correlation analysis: mCCA

CCA between two sets of random variables can be extended to
three or more sets of variables in different ways [9]. In an ex-
tension of the CCA principle where correlation between two

canonical components is maximized, mCCA generalizes the
CCA principle to optimize an objective function of the cor-
relations between pairs of canonical components associated
to the different sets of random variables with respect to the
canonical vectors so that an overall correlation is maximized.
Given n realizations of J sets of pj dimensional zero mean
random vectors xj so that Xj is of size n × pj , the canonical
vectors a1, ..., aJ are determined as

a1, ..., aJ = arg max
a1,...,aJ

J∑
j,k=1

g
(
a⊤j Σjkak

)
(4)

In the optimization (4), the definition of the function g leads
to specific methods defined in [9]. For example, the func-
tion g(x) = x corresponds to the sum of correlation method
(SUMCOR) and the function g(x) = x2 corresponds to
the sum of squared correlations method (SSQCOR). Fur-
thermore, these functions are not constrained, but several
natural choices for constraints under which to carry out the
optimizations (4) can be taken, among them a⊤i ai = 1,∑J

i=1 a⊤i ai = 1 and a⊤i Σiiai = 1. For the subsequent stages,
the canonical vectors are further constrained to be uncorre-
lated to the ones generated in the previous stages. In all cases
defined in [9], mCCA reduces to CCA when J = 2. Similar
to the two sets case, the linear combinations uj = Xjaj ,
j = 1, ..., J represent the canonical correlation components
associated to the canonical vectors a1, ..., aJ . In what follows
the focus is put on the SUMCOR method.

3. BLOCK SPARSE MCCA

3.1. mCCA as a rank one matrix approximation

In what follows all Σjj are assumed to be full rank and the
data considered are the whitened data sets Xj = XjΣ

−1/2
jj so

that there are no difference between the constraints
∑J

i=1 a⊤i ai =

1 and
∑J

i=1 a⊤i Σiiai = 1. This constraint is the natural ex-
tension from the two sets case and is the only one considered
in this paper. Let X denote the n × p, where p =

∑J
j=1 pj

row block matrix, X = [X1, ...,XJ ].

Proposition 1: Let the p × d matrix A be partitioned con-

formably with the partition of X, that is, A =
[
A⊤

1 , ...,A⊤
J

]⊤
,

where Aj is a pj × d matrix. In SUMCOR, A comprises the
first d right singular vectors associated to the d largest singu-
lar values of X.

Proof: Under the SUMCOR objective and the constraint∑J
i=1 a⊤i ai = 1, the first set of canonical vectors is obtained

as the solution of the optimization

a1, ..., aJ = arg max
a1,...,aJ

J∑
j,k=1

a⊤j Σjkak − λ

(
J∑

i=1

a⊤i ai − 1

)
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By setting the derivative with respect aj to zero we get

J∑
k=1

Σjkak = λaj , j = 1, ..., J

or
X⊤Xa = λa, a = (a1, ..., aJ) .

since Σjk = X⊤
j Xk. Therefore a is the first eigenvector of

X⊤X and thus the first left singular vector of X. Adding the
orthogonality constraint between subsequent sets of canonical
vectors, we have

A = argmax
A

tr
(

A⊤X⊤XA
)

subject to the restriction A⊤A = Id. Furthermore we can
easily see that the left singular vector is given by

u =
J∑

j=1

Xjaj

and is also of unit norm as the whitened data sets are consid-
ered.
The SUMCOR problem can then be reformulated as the fol-
lowing rank one matrix approximation optimization problem

min
u,ã

∥X − uã⊤∥2F (5)

where ã = λa. The subsequent pairs (uk, λkak), 1 < k ≤ J,
provide best rank one approximations of the corresponding
residual matrices or rank one matrix deflation. For example,
λ2u2a⊤

2 is the best rank one approximation of X − λ1u1a⊤1 .

3.2. Block sparse mCCA via penalization rank one ma-
trix approximation

The key idea of the proposed block sparse mCCA algorithm
is the observation that the optimization (5) is a least squares
problem. For fixed u, the optimal ã is the least squares co-
efficient vector of regressing the columns of X on u. Intro-
ducing block sparsity on ã in such a context is the familiar
group variable selection problem in least squares regression.
A group sparsity on ã has two main advantages. First, the
canonical correlation components are more interpretable as
the irrelevant or negligible ãi’s will not appear in ã. Second
the canonical correlation component u will not lose much in
terms of the sum of correlation it explains.
To achieve group sparsity on ã, we propose to use the ℓ2-norm
type penalty [14][15] in (5) to promote shrinkage and sparsity
of the groups ãi’s

min
u,ã

1

2
∥X − uã⊤∥2F + α

J∑
i=1

√
pi ∥ ãi ∥2 (6)

where α is the tuning parameter that can be adjusted using a
model selection criterion [19, 20, 21, 22]. The minimization
of (6) with respect to u and ã under the constraint ∥ u ∥2= 1
can be obtained via an iterative algorithm. Consider first the
problem of optimizing over u for a fixed ã.

Proposition 2: For a fixed ã, the u that minimizes (6) and
verifies ∥ u ∥2= 1 is u = Xã/ ∥ Xã ∥.

Proof: From (6) we have

u = argmin
u

1

2
∥X − uã⊤∥2F + α

J∑
i=1

√
pi ∥ ãi ∥2

∝ argmin
u

−u⊤Xã +
1

2
u⊤uã⊤ã (7)

Proposition 2 is obtained by deriving (7) with respect to u
and imposing the norm one constraint.
Second the problem of optimizing over ã for fixed u is con-
sidered.

Proposition 3: For a fixed u, the ã that minimizes (6) is
obtained by iteratively applying

ãj =
(
1−

α
√
pi

∥ u⊤Xj ∥2

)
+

u⊤Xj (8)

where (x)+ is max(x, 0) to ãj , j = 1, ..., J .

Proof: From (6) we have

ãj = argmin
ãj

1

2
∥X − uã⊤∥2F + α

J∑
i=1

√
pi ∥ ãi ∥2

∝ argmin
ãj

−u⊤
J∑

i=1,i ̸=j

Xiãi − u⊤Xj ãj + α
√
pj ∥ ãj ∥2

+
1

2
∥ u ∥22

J∑
i=1,i ̸=j

ã⊤i ãi +
1

2
∥ u ∥22 ã⊤j ãj

+ α
J∑

i=1,j ̸=j

√
pi ∥ ãi ∥2 . (9)

By deriving (9) with respect to ãj , and accounting for the
norm one of u we easily obtain the necessary and sufficient
condition for ã to be a solution (6)

ãj + α
√
pi

ãj
∥ ãj ∥2

= u⊤Xj ∀ãj ̸= 0 (10)

∥ u⊤Xj ∥2≤ α
√
pi ∀ãj = 0 (11)

It can easily be verified that the solution to expressions (10)
and (11) is (8).
The above derivations leads to the following iterative proce-
dure for minimizing (6).
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BSmCCA Algorithm:
1. Initialize: apply the SVD to X to obtain an initial u and
ã = λa as indicated in (5).
2. Update ã: While ∥ ãiter − ã(iter−1) ∥> ϵ iterate (8) for
j = 1 : J
3. Update u using u = Xã/ ∥ Xã ∥.
4. Repeat 2 and 3 until convergence.
5. Standardize ã = ã/ ∥ ã ∥ to obtain λ.

Setting α = 0 in the BSmCCA above algorithm reduces
step 2 to ã to the minimizer of (5) and therefore the normal
SUMCOR algorithm. The computation cost of each step of
this algorithm is O(np). The BSmCCA algorithm is particu-
larly suited when p > n.

4. EXPERIMENTAL RESULTS

For experimental verification of our method, we have used
three subject tfMRI datasets from a block-paradigm right fin-
ger tapping (RFT) task from [4]. During the image acquisi-
tion, subjects were asked to perform right finger tapping task
for 15 sec followed by a 72 sec resting period. This task was
repeated 4 times. For details of image acquisition process,
reader is referred to [4].
Preprocessing steps were done using SPM-12 1 in Matlab
which included head motion correction, coregistration, nor-
malization to standard MNI template, resampled to 2 × 2 ×
2mm3 voxels and spatial smoothing was performed using a
8× 8× 8mm3 full-width at half-maximum (FWHM) Gaus-
sian kernel. To improve SNR and the low frequency scan-
ner drifts, we used a discrete cosine transform (DCT) with a
cutoff frequency of (1/128) Hz. High frequency noise was
removed by smoothing the time courses using 1.5 s FWHM
Gaussian Kernel. The dataset for all subjects was spatially
down sampled 8 times to reduce the computation time for the
algorithm.
After the pre-processing, the fMRI volumes are reshaped into
matrices, where each row corresponds to one voxel and the
columns correspond to different time instants. The data are
then centered and whitened using PCA. To demonstrate the
novelty of BSmCCA, we simulate a noisy fMRI data-set and
use it in the analysis. Thus, we get 4 data-sets X1, ..., X4 of
size n × pj(j = 1, ..., 4). We then carry out BSmCCA to
obtain the canonical vectors a1, ..., a4, corresponding to the
4 datasets. By selecting an appropriate value of λ, the trans-
form corresponding to X4 reduces to zero. This implies that
the fourth data-set is an out-lier and hence, is removed from
the analysis by reducing it’s canonical vector to zero. For the
above data-set, we use α = 2.
After the BSmCCA, we combine the canonical vectors of all
the data-sets and compute PCA, and select it’s first compo-

1http://www.fil.ion.ucl.ac.uk/spm/

Fig. 1. The group activation map for block-paradigm RFT
data using BSmCCA

nent to generate the canonical vector that represents all the
data-sets. This is then used to project all the data and con-
struct a mean group activation map that represents the group
of patients. From the figure 1, it can be observed that the acti-
vation maps contain strong activation in the motor cortex area
as also seen in [23, 24, 25]. Thus, the BSmCCA,

• Successfully removes the noisy patient from the analy-
sis, by reducing it’s canonical vector to zero.

• Constructs a mean activation map that represents the
group of patients, excluding noise.

5. CONCLUSION

A new multiple-set canonical correlation analysis (mCCA)
method is proposed in this paper. The proposed method is
based on the SUMCOR method for mCCA and allows the
identification of significant sets of variable that are active in
the relationships between sets of variables. The algorithm is
derived by establishing the link between the set of canonical
vectors and rank one matrix approximation. The selection of
the most significant sets of variables is obtained via penalized
rank one matrix approximation where the sum of ℓ2-norm of
variables sets penalty is used to shrink the irrelevant sets of
variables to zero. While only the SUMCOR methods is ad-
dressed in this paper, the proposed method can easily be ex-
tended to the SSQCOR method. Note that the proposed algo-
rithm can also be seen as a block sparse principal component
analysis (PCA) algorithm.
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