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ABSTRACT
Many data-driven approaches exist to extract neural repre-
sentations of functional magnetic resonance imaging (fMRI)
data, but most of them lack a proper probabilistic formulation.
We propose a scalable group level probabilistic sparse factor
analysis (psFA) allowing spatially sparse maps, component
pruning using automatic relevance determination (ARD) and
subject specific heteroscedastic spatial noise modeling. For
task-based and resting state fMRI, we show that the sparsity
constraint gives rise to components similar to those obtained
by group independent component analysis. The noise model-
ing shows that noise is reduced in areas typically associated
with activation by the experimental design. The psFA model
identifies sparse components and the probabilistic setting pro-
vides a natural way to handle parameter uncertainties. The
variational Bayesian framework easily extends to more com-
plex noise models than the presently considered.

Index Terms— sparsity, probabilistic factor analysis,
neuroimaging, variational Bayes, independent components

1. INTRODUCTION

In functional magnetic resonance imaging (fMRI) large
amounts of data are currently being generated due to high
spatial resolution, an increase in the typical number of ses-
sion acquired and a trend towards multi-center acquisition
and data sharing. There is therefore a growing need for meth-
ods and algorithms that scale, while still keeping reasonable
model assumptions.

A common problem in functional neuroimaging is finding
a good latent representation of the data. One approach is to
use data-driven methods, which allows the data to “speak for
itself”. Two popular approaches in fMRI are to assume or-
thogonality or independence, giving rise to principal compo-
nent analysis (PCA) [1] and independent component analysis
(ICA) [2], respectively. For group level analysis group-ICA
[3] and independent vector analysis (IVA) [4] are the most
prominent data-driven methods for inferring components
of neural activity. Group-ICA and IVA have the advantage
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that independent components often are sparse providing inter-
pretable spatial activation maps, due to the typical assumption
of sparse source distributions. Interpret-ability in fMRI may
also be achieved by models optimizing for sparsity instead
of independence [5], achieving similar results despite opti-
mizing different properties [6]. Sparsity allows for a more
flexible representation and combining it with independence
seems like a promising endeavor [7].

ICA models in general assume noise free data, which
is commonly achieved by modeling additive homoscedastic
Gaussian noise, or the noise is sought removed through a
combination of (PCA) pre-whitening and standardization to
unit voxel variance. A probabilistic ICA (pICA) approach
with spatial and temporal noise modeling was suggested in
[8], which included a noise estimation step in their frame-
work. However, the noise is estimated in a separate step from
the ICA components, which can be problematic in compar-
ison with joint estimation [9]. While [8] does incorporate
probabilistic elements into ICA, it is not probabilistic from a
Bayesian modeling perspective. In contrast, joint estimation
has shown promising results on fMRI (cf. [10, 11]).

We propose a probabilistic sparse factor analysis (psFA)
model for group level analysis of fMRI data with het-
eroscedastic noise. Model inference is done using variational
Bayes with a mean-field approximation and automatic rele-
vance determination [12] to promote sparsity on individual
voxels of the spatial maps and prune components by learning
their relevance in time. To overcome the large computational
burden involved massive parallelization of the updates is ex-
ploited using a graphical processing unit (GPU). The model
is first investigated on synthetic data, where the advantages of
using a Bayesian approach to factor analysis (FA) and PCA is
briefly assessed. The proposed model’s applicability to fMRI
is tested on a motor task experiment [13] and on a resting state
experiment [14] and contrasted with pICA (MELODIC[8]).

2. METHODS AND DATA

2.1. Probabilistic Sparse Factor Analysis

We propose a group level probabilistic sparse factor analy-
sis model (psFA), which is a combination of the probabilistic
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sparse PCA model [15], the group level PCA analysis [16]
and heteroscedastic voxel noise, first proposed in the context
of fMRI with variational inference in [17]. The generative
model for a data array, X ∈ RV×T×B , with V voxels, T
timepoints and B subjects, can be written as,

αvd ∼ G(aα, bαvd
), γd ∼ G (aγ , bγd) , τ (b)v ∼ G

(
aτ , bτ(b)

v

)
av ∼ N

(
0,diag (αv)

−1
)
, s

(b)
t ∼ N

(
0,diag(γ)−1

)
x
(b)
t ∼ N (As

(b)
t , diag(τ (b))−1),

in which d indexes the latent space dimension D, v indexes
voxels, t indexes time and b indexes subjects. The parameter
αvd is the precision on the spatial maps in the matrix A, and
acts as a sparsity pattern. The parameter γd is the precision
on the d’th component in the time-courses. Thus we have
two ’forces’ that can prune in the model, α to make the maps
sparse and γ to prune away irrelevant components.

Finding the posterior P (θ|X) is analytically intractable
and an approximate solution is found through variational in-
ference, as originally proposed for PCA by [18]. For the psFA
model the mean-field approximation to the posterior,
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is used due to its similarity to the actual P (·) distributions
yielding closed form solutions in the update rules. We use co-
ordinate ascent variational inference, updating the moments
of each variational distribution in a cyclic fashion condition-
ing on the other moments. The derived moments and a MAT-
LAB implementation are available in the PLVM toolbox1.

The computational burden of the proposed model lies in
calculating Σ

(v)
A for each voxel v, which has O(D3V ) time

complexity due to inversion of V matrices of size D × D.
These inversions are embarrassingly parallel, and can be cal-
culated quickly using GPUs, but comes at the price of having
to keep the matrices in memory, requiring O(D2V ) space.
Our implementation requires all V inversions to be performed
simultaneously, which is a memory-limiting factor when D is
large, but this can be relaxed to accommodate lower-memory
systems at the cost of runtime.

If desired, subject specific mean values can be modeled as
X(b) = As

(b)
t + µ(b), where µ(b) ∼ N (0, β−1IV ). In prac-

tice, we removed the empirical mean values prior to analysis.

2.2. Motor-task Data

We investigate the proposed model on a motor task exper-
iment, which was previously acquired and analyzed in [13,

1https://brainconnectivity.compute.dtu.dk/

19]. The experiment consisted of B = 29 young and healthy
adults, scanned while performing a block design motor task.
The participants were visually cued by a blinking light, to in-
dicate either right (green light) or left (red light) hand finger
tapping. Each scanning session consisted of 10 task blocks,
where each block consisted of a sequence of four tasks, i.e.
“right/rest/left/rest”, with in total 240 images for each ses-
sion. The data was pre-processed using standard techniques
and parameter settings of the SPM8 software package2. Each
subject was realigned to the mean volume (rigid-body), nor-
malized to a common Montreal Neurological Institute (MNI)
template, and resliced to native 3 mm3 resolution. Afterwards
spatial smoothing with a 3D Gaussian kernel (6mm FWHM)
was applied, wavelet despiking to remove temporal outliers
[20], voxel means subtracted, and data detrended via high-
pass filtering with a 128 s cutoff. A grey-matter mask was
found using the standard tissue probability map from SPM,
consisting of all voxels with grey-matter probability > 0.2
and observed in all subjects, resulting in 48799 voxels. Each
subject was then z-scored individually.

2.3. Resting State Data

We used the resting-state data3 from [14] and applied the
following pre-processing steps to sessions 014-1044 using
SPM12. All sessions were coregistred to the first image
of the first functional session (session 014), and all ses-
sions were then jointly corrected for motion artefacts using a
rigid-body transformation towards the mean volume. A T1-
weighted anatomical image from session 012 was coregistred
to the functional space and grey matter (GM), white matter
(WM) and cerebrospinal fluid (CSF) was segmented using
the standard tissue probability map from SPM. All functional
sessions were then highpass filtered (1/128 Hz), nuisance
regressed using motion parameters and eroded CSF and WM
masks, and wavelet despiked [20]. Finally, all sessions were
resliced (due to a change in the number of slices after ses-
sion 027) to the first session and smoothed using a FWHM
5mm Gaussian kernel. The GM-mask was then resliced to
the functional images and thresholded yielding a data matrix
of size 69430 voxels × 518 timepoints for each session. Due
to memory limitations on the GPU we only considered the
25 first sessions of the data. For visualization purposes, we
normalized the components from psFA and MELODIC to
MNI space (2 mm3 resolution) using the deformation field
estimated in the segmentation step.

3. RESULTS

For all analysis the psFA (or pFA) model the following pa-
rameters are fixed; aγ , aα, aτ , bγd , b

τ
(b)
v

, bαv,d
= 1e−6. Vari-

2http://fil.ion.ucl.ac.uk/spm
3https://openfmri.org/dataset/ds000031/
4Some sessions did not contain resting state data and were thus discarded
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Fig. 1. Synthetic experiments: Comparison between the true
and estimated (first three) spatial maps A. A histogram for
each map is shown. Further, the Amari distance and average
correlation between Atrue and Aest is given.

ational inference was performed for the remaining parameters
(except α for pFA), starting form an initial solution where the
elements of A were drawn from aN (0, 1) distribution and the
subject specific time courses were then back reconstructed,
S(b) = (ATA)−1ATX(b) . In our analysis we try to miti-
gate the effect of local minima by running the psFA analysis
multiple times with random initializations. We note that this
is not sufficient to avoid local minima, and this should be in-
vestigated further. In all results in this section, only the run
achieving the maximum lowerbound is further analysed.

3.1. Synthetic Experiments

We investigate the model in a synthetic setting with B = 3
subjects. For each subject, we generated three sources
(D = 3), of length T = 25, from aN (0, 1) distribution.These
sources were then mapped to a higher dimensional space of
size V = 1000 through a sparse matrix A. The elements of A
were generated from a N (0, 1) and element-wise multiplied
by a binary indicator from U(0, 1) > 0.5. Heteroscedastic
voxel- and subject-specific noise variance 1/τ

(b)
v was drawn

from N (0.009, 0.002). Noise drawn from N (0, 1/τ
(b)
v ) was

then added to the corresponding voxel and subject.
The psFA (sparsity) and pFA (no sparsity) model were

then run for 500 iterations with D = 6, with fifty random
restarts, results are shown in Fig. 1. These methods are com-
pared to regular PCA and infomax ICA5 on temporally con-
catenated data. The best performing methods are psFA and
ICA, achieving high correlation and low Amari distance.

3.2. Motor-task Experiment

The psFA and pFA models were run for 1000 iterations with
D = 25 components and we restarted the algorithm 5 times.
The results obtained by psFA and pFA are contrasted to those
found by MELODIC-ICA 6 (pICA) with default settings, but
using the same grey matter mask as described in section 2.2.

5http://cogsys.imm.dtu.dk/toolbox/ica/
6http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC

The Pearson correlation between the estimated compo-
nents and a set of reference maps was then calculated. The
reference maps were, the default mode network (DMN) from
[21] and eight anatomical regions from [22] which were: 1)
Visual hOc1, hOc2, FG1, FG2; 2) Left, right sensoriomotor,
left and right motor cortex. For each model a visual and two
motor components with highest absolute Pearson correlation
to the reference maps are shown in Fig. 2. The components
are sign corrected such that there is a positive correlation.
The components found by psFA and pICA , Fig. 2a and 2c,
have more well-defined spatial and temporal activation than
those found by pFA, Fig. 2b. While pFA does capture the ex-
perimental design, the resulting spatial maps are more dense
making them difficult to interpret. From the histograms, it
is evident that both psFA and pICA enforce super-Gaussian
distributions, which pFA does not.

The expectation of the log precision of the noise τ , av-
eraged over subjects, is shown in Fig. 4a. As the estimated
precision varies over voxels, this hints that the assumption of
heteroscedastic noise is supported by the data. Furthermore,
the regions of high precision are related to the experimental
design, where a high signal to noise ratio is expected. The
noise precision estimates by pFA are similar those of psFA
and are therefore not shown.

3.3. Resting state Experiment

The psFA model was run for 2000 iterations, D = 50 compo-
nents and five random restarts. In Fig. 3, we show the com-
ponent from psFA and pICA that has highest correlation with
the DMN reference map (see sec. 3.2). Both components have
super-Gaussian shape (cf. histograms and kurtosis), and seem
to capture the posterior part of the DMN. However, it seems
the psFA obtains a more sparse solution. Finally, we observe
from the precision-noise maps in Fig. 4b, where it seems that
highest certainty is found in areas contributing to DMN.

4. SUMMARY

In this work we investigated a scalable sparse probabilistic
extension of factor analysis (psFA) for fMRI. We found in
two data sets; a motor-task experiment with 29 subjects and a
resting-state data set with 25 sessions, that inducing this form
of sparsity results in ICA-like components. The probabilistic
approach enables joint modeling of noise and quantification
of parameters and their uncertainties. This comes at a com-
putational cost, but due to the model structure a lot of com-
putations are trivially parallelizable which we have exploited
in the implementation. The fast inference scheme is currently
limited by the memory on the single GPU used, but the pro-
posed model easily extends to multiple GPUs. Future direc-
tions should be to investigate more advanced noise models
and prediction on previously unseen data.
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(a) psFA: The estimated components shows the sparsity constraint leads to components which are more sparsely described and the histogram
shows many near zero values.
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(b) pFA: The model finds broad components, as can be seen from both the slices and histograms, where many voxels have high values.
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(c) MELODIC-ICA: Left- and right sensorimotor cortex appear more lateralized, compared to psFA.

Fig. 2. Motor experiment (psFA): The three estimated components for each model (psFA,pFA and MELODIC-ICA) which
had highest correlation to sensorimotor (left and right) and visual related areas. For each component the following is shown; 1)
eight slices with z-scored and thresholded (> 1) spatial activation (red: positive, blue: negative). 2) histogram (100 bins) of the
spatial elements. We also report the empirical kurtosis k. 3) temporal activation of the component (black = mean over subjects,
green = individual subjects).
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Fig. 3. Resting state experiment: For psFA (left) and MELODIC-ICA (right) we show the component with highest spatial
correlation to the default mode network. We show; 1) Eight z-scored and thresholded (> 1) spatial activation slices (red:
positive, blue: negative). 2) A histogram (100 bins) of the spatial elements. We also report the empirical kurtosis k.
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