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ABSTRACT 

 

Functional brain network analysis has been a powerful tool 

for measuring brain function in normal and pathologic states 

based on resting state fMRI (rsfMRI) data. Recent advances 

in pattern recognition and sparse modeling have enabled us 

to characterize subject-specific functional brain networks 

and derive clinically useful biomarkers. In this paper, we 

briefly introduce our recent work in the development of 

functional brain network analytic techniques, including 

functional brain network modeling, pattern recognition of 

functional brain networks, as well as modeling 

heterogeneous patterns of functional connectivity. Finally, 

we discuss some current challenges that have received and 

are likely to receive more attention in the near future.     

 

Index Terms— functional brain network, pattern 

recognition, sparse modeling, brain parcellation, brain 

decomposition 

 

1. INTRODUCTION 

 

Resting state fMRI (rsfMRI) provides reproducible, task-

independent biomarkers of coherent functional activity 

linking different brain regions [1]. Functional brain network 

analysis of the rsfMRI data has revolutionized our ability to 

measure brain function in normal and pathologic states by 

modeling the brain as a network, consisting of a set of nodes 

and a connectivity matrix measuring functional coherence 

between the nodes [2-5]. A variety of quantitative measures 

of the brain network nodes and connectivity can be derived 

from the rsfMRI data and have been investigated at the 

group level as well as on an individual basis. Recent 

advances in pattern recognition and sparse modeling of 

rsfMRI data have enabled us to characterize subject-specific 

functional connectivity (FC) and derive clinically useful 

biomarkers, and  many pattern classification studies of brain 

networks have demonstrated promising performance for 

predicting brain maturity and distinguishing diseased from 

normal brain states [6-11].  

In order to characterize subject-specific functional brain 

networks and provide individualized biomarkers based on 

rsfMRI data, we have developed functional brain network 

modeling and pattern recognition methods [8-17]. We first 

introduce subject-specific functional network modeling 

methods to capture inter-subject variations in FC based on 

rsfMRI data [12-15, 17]. Our methods either parcellate the 

functional brain into local functional units [12, 14] or 

decompose the functional brain into spatial intrinsic 

connectivity networks (ICNs) with group constraints [13, 15, 

17]. Both the local functional units and ICNs can be used as 

brain network nodes for constructing subject specific 

functional brain networks based on rsfMRI data of 

individual subjects without sacrificing correspondence 

across subjects. Second, we introduce pattern recognition 

methods of functional brain networks for establishing 

clinically useful biomarkers with better sensitivity and 

specificity in prediction and classification, including a sparse 

dictionary learning method to represent FC measures that 

provide improved robustness and interpretability for use in 

pattern recognition [9], a manifold learning method for 

identifying discriminative ICNs and constructing effective 

pattern classifiers [11], and a pattern recognition method for 

capturing heterogeneous patterns of functional connectivity 

[8]. Finally, we conclude this paper with a discussion of 

current challenges in pattern recognition of functional brain 

networks. 

 

2. FUNCTIONAL BRAIN NETWORK MODELING 

 

Functional brain network analyses model the brain as a 

network consisting of a set of nodes, e.g., spatial regions of 

interest (ROIs) or spatial ICNs, and a connectivity matrix 

measuring functional coherence between the nodes based on 

their associated time courses [2-5]. Since the brain network 

node definition can have a major impact on the network 

construction and analysis [18], many methods have been 

developed to define functionally meaningful network nodes, 

including brain parcellation [12, 19-24] and brain 

decomposition methods [4, 5, 15, 25-29].  

 

2.1. Functional brain parcellation  

 

As the precise functional organization of the brain remains 

unclear, no widely accepted means are available for defining 

nodes for brain network analysis. Anatomical atlases, such 

as the AAL atlas [30], have been adopted to define brain 

network nodes in many studies. However, anatomically 
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defined ROIs often do not possess the desired functional 

properties, such as intra-region functional homogeneity, 

inter-region functional distinctiveness, and inter-subject 

functional consistency of the same region, because the 

functional units do not locate relative to anatomical 

structures consistently across subjects [31-34]. 

To define functionally meaningful network nodes, many 

methods have been developed to partition the brain space 

into functionally coherent, spatially disjoint regions using 

clustering algorithms, such as region growing [19], 

hierarchical clustering [20], graphical models [21, 22], and 

normalized cuts [23, 24]. However, these parcellation 

methods are limited in requiring a good initialization step 

[19], generating parcels that are too isotropic [23, 24], 

relying on complex models [21, 22], or relying on iterative 

heuristics that could accumulate errors [20]. In order to 

overcome these limitations, at least partially, we have 

proposed a novel method, GRASP: geodesic Graph-based 

Segmentation with Shape Priors for the functional 

parcellation of the cortex  [12], based on discrete graphical 

models, which depends on only one parameter that 

regularizes the number of parcels to be obtained, adopts a 

geodesic star shape prior to enforce each parcel’s spatial 

connectedness, relies on an optimization strategy that can 

recover from errors, can produce very anisotropic parcels, 

and can be solved using efficient solvers [35]. Our method 

has been validated with 859 subjects from the PNC database 

[36] and achieved higher reproducibility than normalized 

cuts and hierarchical clustering for similar fit of the 

parcellation to the rsfMRI data [12]. Fig.1 shows 

representative brain parcellation results obtained using 

GRASP at different spatial scales. The method has been 

extended for deriving personalized brain parcellation results 

[17].  

 

 
Fig. 1. Functionally coherent cortical regions determined by 

GRASP at different spatial scales. Data were obtained from [12]. 

 

2.2. Functional brain decomposition 

 

Decomposing the brain into spatially overlapping 

components is an appealing method for modeling many-to-

many mapping between brain regions and functions in 

rsfMRI data analysis. The brain decomposition methods 

typically build upon matrix factorization methods to 

decompose the functional imaging data into a set of spatial 

components, often referred to as ICNs, such as Default 

Mode Network (DMN). The most commonly used brain 

decomposition methods are built upon spatial or temporal 

independent component analysis (ICA) [4, 5]. More 

recently, a few methods have been proposed to discover 

ICNs from fMRI data with non-independence assumptions 

[13, 25-27, 29]. 

Most of the extant brain decomposition methods, except 

those with nonnegative constraints, tend to produce highly 

dispersed ICNs with both positive and negative loadings that 

are typically corresponding to anti-correlated signals. Since 

time courses associated with ICNs are projection results of 

the original fMRI time series onto the ICNs, it is not an easy 

task to interpret biological meaning of time courses of an 

ICN with both positive and negative loadings. To overcome 

these challenges, we propose a collaborative, sparse, 

nonnegative matrix decomposition framework, tailored to 

handle individual subject data for identifying a set of subject 

specific ICNs [13]. In particular, our framework is built on 

sparse non-negative matrix factorization methodology. Our 

method adopts several regularization terms to enhance its 

performance, including   an inter-subject consensus prior to 

regularize the common structure of ICNs across subjects, 

intra-subject priors to obtain ICNs with spatial and 

functional coherence, and an intra-subject parsimonious 

prior in the temporal domain to encourage compact 

decomposition in a data-driven way. Our method has been 

validated based on both simulated and real rsfMRI datasets, 

and the experiment results have demonstrated that our 

method could obtain sparse, reproducible ICNs with better 

functional coherence and subject specific functional 

information [13]. 

 

3. PATTERN RECOGNTION OF FUNCITONAL 

BRAIN NETOWRKS 

 

From functional brain networks, one can compute a variety 

of complementary measures to characterize functional 

network nodes and FC patterns. Such measures have been 

used as features in pattern recognition studies of rsfMRI data 

with promising performance for predicting brain maturity 

and distinguishing diseased from normal brain states [6-11].  

 

3.1. Pattern recognition of FC measures 

 

FC measures can be directly used as features in pattern 

recognition studies [6]. However, the FC measures are 

inherently correlated and reside in a non-Euclidean space. 

Prediction models that do not take into consideration the 

inherent correlations among network measures may fail to 

detect subtle and complex/multivariate FC patterns, as 

classification with correlated features typically has 

unreliable performance [37].  

To characterize functional brain networks with 

improved robustness and interpretability, our group recently 

proposed sparse connectivity pattern (SCP) learning, 

leveraging the effective non-linearity of sparse dictionary 

learning  as a means for describing the functional 

connectivity patterns of brain networks [9, 10].  The SCP 

learning algorithm could obtain a parsimonious 
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representation of whole-brain functional connectivity, 

consisting of a set of sparse, overlapping networks, referred 

to as SCPs. Due to the use of L1 norm minimization and the 

associated ability to select only a few of all possible SCPs 

for a decomposition of the brain connectivity measures, 

sparse decompositions have the ability to use different SCPs 

to represent data of different individuals. Furthermore, the 

sparsity constraint regularizes the data fitting and increases 

robustness to noise by balancing data fitting and model 

sparsity. As a consequence, the obtained SCPs are able to 

effectively represent clustered imaging data from 

heterogeneous populations, by using different SCPs for 

different subpopulations.  

The resulting SCPs tend to be both more accurate in 

simulated data and more reproducible in split sample 

experiments [9, 10]. Furthermore, SCPs tend to be more 

interpretable than components obtained by other multivariate 

methods, such as ICA, as these other methods tend to form 

complex weighting of the data throughout the entire brain, 

rendering them difficult to interpret without proper 

thresholding. Finally, our methods also minimize the 

negative impact of correlated features on the robustness of 

prediction models by transforming the original correlated FC 

measures to a new coordinate system spanned by the SCP 

basis functions identified by the sparse coding. Our method 

has been validated based on several publicly available 

datasets, including PNC database [36]. Fig. 2 shows 

representative results obtained using our SCP learning 

method [9]. 

 
Fig.2. Two representative SCPs identified. A: DMN anti-correlated 

with fronto-parietal network; B: Sensorimotor regions anti-

correlated with fronto-parietal network. Data were obtained from 

[9].  

  

3.2. Pattern recognition of Spatial ICNs 

 

Beside the FC measures, the subject specific spatial ICNs 

can also be treated as imaging features for statistical analysis 

and pattern recognition. For example, spatial independent 

components have been used as features in group comparison 

and pattern classification studies [7, 11]. Particularly, 

voxelwise values of spatial independent components were 

directly used as features for building classifiers [7]. 

However, due to high dimensionality of voxelwise measures 

of the spatial independent components, feature selection or 

feature transformation techniques have to be applied for 

reducing the feature dimensionality [7], which makes the 

interpretation of classification models difficult since they are 

built on part of the original components if feature selection 

is used or certain combinations of the original components if 

feature transformation is used. Moreover, a priori knowledge 

is often needed to select components and no systematic 

component selection method is available.  

We have proposed a novel discriminant analysis 

algorithm, capable of automatically identifying 

discriminative spatial ICNs and combining them for 

classification [11]. The key techniques used in our method 

include 1) representing the independent components of each 

individual subject as a linear subspace, referred to as 

functional connectivity pattern (FCP), 2) adopting a 

Grassmann manifold distance metric to measure distance 

between FCPs of different subjects, and 3) using a 

component selection method to choose ICNs (selecting or 

removing whole ICNs) in conjunction with support vector 

machine (SVM) classifiers for optimizing the classification 

performance [11]. Our method also overcomes the scaling 

ambiguity problem associated with matrix factorization 

methods due to the use of the Grassmann manifold distance 

metric. Fig. 3 shows discriminative ICNs selected in a 

schizophrenia study [11].  

 

 
Fig. 3. Discriminative ICNs identified in a schizophrenia study (the 

numbers indicates the order of the ICNs were selected) using our 

Grassmann manifold learning based classification method. Data 

were obtained from [11]. 

 

3.3. Characterization of heterogeneous FC patterns  

 

When comparing two groups, such as patients versus 

controls, a common assumption in both mass-univariate and 

multivariate pattern analysis methods is that there is a single 

underlying pattern capturing the group difference. 

Therefore, existing methods are often designed to seek a 

single pattern distinguishing between two groups. If only a 

subgroup of individuals displays a particular pathologic 

pattern, all these methods fall short of capturing the relevant 

differences, and at best find the “common denominator” 

among all individuals within a group. Such within-group 

heterogeneity calls for methods that characterize group 

differences using multiple patterns, corresponding to 

different sub-clusters or sub-populations.  

To overcome this limitation, our group recently 

proposed pattern recognition methods to capture 

heterogeneity patterns that differentiate between two 
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populations [8, 38, 39], rather than a single common 

denominator pattern.  Particularly, we proposed a method to 

explicitly model and capture heterogeneous FC patterns in a 

Mixture-of-Experts framework [8]. By combining 

unsupervised modeling of mixtures of distributions with 

supervised learning of classifiers, our method is capable of 

approximating non-linear boundary between two different 

groups with a piece-wise linear boundary, thus allowing 

discovery of multiple patterns of group differences. Our 

method has achieved promising pattern classification 

performance and identified discriminative subgroup patterns 

in validation experiments based on both simulated data and 

rsfMRI data from the Baltimore Longitudinal Study of 

Aging. Particularly,  in the investigation of heterogeneous 

effects of aging on brain function in cognitively normal 

older adults (>85years) relative to a reference group of 

normal young to middle-aged adults (<60years), we found 

strong evidence for the presence of two subgroups of older 

adults, with similar age distributions in each subgroup, but 

different FC patterns associated with aging. As shown in 

Fig.4, while both older subgroups showed reduced FC in the 

DMN, they displayed different FC patterns [8].  

 
Fig. 4. A SCP whose average FC is reduced in both older 

subgroups, including the DMN regions (red–yellow) and their anti-

correlation with the medial visual areas (blue–light blue). The 

distribution fit of the underlying SCP coefficient histograms is also 

shown for each subgroup. Significance levels are indicated as 

follows: ‘**’ for p-value < 0.01 and ‘*’ for p-value < 0.05. Data 

were obtained from [8].  

 

4. CURRENT AND FUTURE CHALLENGES AND 

DIRECTIONS 

 

Recent years have witnessed impressive progress in both 

functional brain network modeling and pattern recognition 

of functional brain networks. We briefly review some 

current challenges that have received and are likely to 

receive more attention in the near future. 

Personalized brain network modeling has received 

increasing attention. Since brain network nodes play 

important roles in brain network modeling, effort has been 

devoted to the development of personalized brain 

parcellation [14, 17, 40, 41] and brain decomposition 

methods  [15, 26, 28, 42].  It is essentially a multi-objective 

optimization problem to achieve a group-consistent, subject-

specific functional parcellation or decomposition of the 

brain, and often a trade-off between group-consistency and 

subject-specificity has to be made. The existing studies often 

adopt heuristic strategies to compute a personalized brain 

parcellation or decomposition without losing comparability 

across subjects, such as initializing personalized 

computation with a group level result or regularizing the 

personalized results with a group similarity constraint. 

Although such strategies have been successful in many 

studies, mathematically principled ways are needed. As 

complementary methods, the brain parcellation and the brain 

decomposition methods have been developed in parallel. A 

unified framework of the parcellation and the decomposition 

may provide better modeling of the functional brain 

networks.  

Many pattern recognition studies of brain networks have 

demonstrated promising performance for predicting brain 

maturity and distinguishing diseased from normal brain 

states [6-11]. In these studies, pattern recognition models are 

typically built upon either FC measures or measures of brain 

network nodes, particularly spatial ICNs. It is expected that 

an effective combination of both FC measures and measures 

of brain network nodes in pattern recognition could achieve 

better performance than pattern recognition models built 

upon either FC measures or measures of network nodes 

alone.  

Our studies have also demonstrated that modeling 

heterogeneous imaging patterns explicitly in pattern 

recognition is capable of improving both pattern recognition 

performance and interpretability of the identified patterns [8, 

38, 39]. Such a strategy might be also useful in the brain 

network modeling to define personalized brain network 

nodes by taking into consideration heterogeneous subgroup 

effects. 
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