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ABSTRACT

Granger causality based approaches are popular in unveiling
directed interactions among brain regions. The present work
advocates a multi-kernel based nonlinear model for obtaining
the effective connectivity between brain regions, by wedding
the merits of partial correlation in undirected topology identi-
fication with the ability of partial Granger causality (PGC) to
estimate edge directionality. The premise is that existing lin-
ear PGC approaches may be inadequate for capturing certain
dependencies, whereas available nonlinear connectivity mod-
els lack data adaptability that multi-kernel learning methods
can offer. The proposed approach is tested on both synthetic
and real resting-state fMRI data, with the former illustrating
the gains in directed edge presence detection performance, as
compared to existing PGC methods, and with the latter high-
lighting differences in the estimated test statistics.

Index Terms— fMRI, partial Granger causality, partial
correlation, kernel-based regression, multiple kernel learning.

1. INTRODUCTION

Functional (f)MRI is an imaging modality used in estimating
brain activity that has greatly improved our understanding of
brain functionality [15]. Many contemporary fMRI studies
deal with functional connectivity networks, that is networks
formed by pairs of regions whose activities exhibit some form
of statistical dependence [30]. These dependencies are as-
sessed by means of functional connectivity measures, which
are also the main focus of this work.

Popular approaches to estimating undirected functional
connectivity graphs include Pearson’s correlation [29], and
partial correlation (PC) coefficients [21]. In cases where
edge directionality is additionally required, (linear) Granger
causality and its variants, such as partial Granger causality,
are typical alternatives [12, 24].

Although the aforementioned approaches are linear ones,
motivation for developing nonlinear methods is provided
by observations indicating that the relationship between the
blood-oxygen-level dependent (BOLD) response and the un-
derlying neural activity may be nonlinear [19].
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In this work, kernel-based nonlinear regression will be
employed first for obtaining the PGC test statistics, with the
aim of unveiling nonlinear interactions that linear models are
unable to capture. Instead of all node pairs, these test statistics
will only be estimated for pairs of nodes whose kernel-based
PC (KPC) coefficient [17] is deemed statistically significant.
This intermediate step reduces the number of hypothesis tests
required to be jointly performed for directed edge inference
and thus alleviates the loss in statistical power that correc-
tion for multiple comparisons results in. Finally, multi-kernel
learning is employed in order to choose the kernel, or more
precisely learn an optimal combination of kernels from a pre-
selected set, based on the data. This choice critically affects
the performance of any kernel-based method.

A kernel-based variant of Granger causality has been de-
scribed in [18, 20], and a nonlinear version of PGC can be
found in [12]. In contrast with the present work, [18, 20] do
not handle the (critical) problem of kernel selection, whereas
[12] does not a employ a reproducing kernel Hilbert space
formulation. Moreover, none of the aforementioned ap-
proaches attempts to reduce the number of hypothesis tests
that are jointly performed. Regarding multi-kernel learning
techniques, they have been employed in fMRI based tasks,
with examples including classification and feature selection
[6, 16] as well as functional connectivity estimation [17].

2. NONLINEAR DIRECTED LINK MODELS

Let V denote the set of nodes in the sought after brain net-
work, and |V| the cardinality of this set. Each node cor-
responds to a region, defined by means of a data-driven or
anatomical parcellation of the brain. Moreover, let xν :=
[xν [1] . . . xν [T ]]> stand for the representative vector of the
region ν ∈ V , obtained from the timecourses of the voxels
belonging thereto.

Here we will focus on partial Granger causality (PGC),
that is known to be more robust to exogenous inputs and la-
tent variables relative to the “ordinary” (multivariate) Granger
causality [12]. Let S := V\{i, j} denote the set of all
nodes except for i and j, {n1\ij , . . . , n|V |−2\ij} be an in-
dexing set for the nodes in S, and let χ\ij [t] := [xn1\ij [t],

. . . , xn|V |−2\ij [t]]
> collect observations across these nodes
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per slot t. PGC relies on the residuals {εi|V \j [t]}Tt=d+1,
{εi|V [t]}Tt=d+1 of the following d-th order linear regression
models [1]

xi[t] = χ̄>\ij [t]γi + εi|V \j [t] (1a)

xi[t] = χ̄′>\ij [t]δi + εi|V [t] (1b)

where χ̄\ij [t] := [χ>\ij [t], . . . ,χ
>
\ij [t−d], xi[t−1], . . . , xi[t−

d]]> and χ̄′\ij [t] := [χ̄>\ij [t], xj [t − 1], . . . , xj [t − d]]>; note
that χ̄′\ij [t] augments χ̄\ij [t] with the d past values of {xj [t]}.

If model (1b) is deemed statistically more valid than (1a),
then a (directed) edge from j to i is declared to be present in
the estimated graph. Intuitively, if augmenting the regressors
for predicting xi[t] with past values of {xj [τ ]}τ<t lowers the
residual error variance, then (1b) is in effect, and we assert
that j Granger causes i [11]; that is, improved prediction ac-
curacy is captured by lower residual variance in the direction
of the edge under consideration. In particular, the following
hypothesis test, that uses Fij := var(εi|V \j)/var(εi|V ) as a
test statistic, is performed

H0 : Fij ≤ 1; H1 : Fij > 1 . (2)

According to H1, {xj [t]} “Granger causes” {xi[t]},
whereas according to H0 it does not.

2.1. Kernel-based PGC

Although (1a) and (1b) postulate that the relationships be-
tween xi[t] and χ̄\ij [t], χ̄′\ij [t] are linear, we surmise that
allowing for a much-broader class of nonlinear functions will
better capture the presence (or absence) of dependencies be-
tween nodal time series.

In order to model the aforementioned nonlinear functions,
we will rely on a reproducing kernel Hilbert space (RKHS)
formulation [27]. In particular, we will consider nonlinear
functions from the spaceH described as

H := {f : f(χ[t]) =

∞∑
τ=1

βτκ(χ[t],χ[τ ])} (3)

where κ denotes a (preselected) similarity function, known
as a kernel. Typical examples of kernel functions, which
uniquely define their associated RKHSsH, include the linear
kernel κL(χ1,χ2) := χ>1 χ2, and the Gaussian kernel [27]

κG(χ1,χ2) := e
−‖χ1−χ2‖

2
2

2σ2 . (4)

Kernels such as κG are reproducing, that is ∀f ∈ H and with
〈·, ·〉 denoting the inner product in H, it holds that f(χ[t]) =
〈Rχ[t], f〉, where Rχ[t](χ[τ ]) := κ(χ[t],χ[τ ]) [27].

With H defined, we can now formulate our kernel-based
estimators for PGC. In particular, consider replacing the (lin-
ear) regression models (1a) and (1b) respectively with

xi[t] = fi|V \j(χ̄\ij [t]) + εi|V \j [t] (5a)
xi[t] = fi|V (χ̄′\ij [t]) + εi|V [t] (5b)

where the nonlinear functions fi|V \j , fi|V belong toH.
Given {xi[t], χ̄\ij [t])}Tt=d+1, kernel ridge regression

seeks a function f ∈ H that optimally fits the data while
controlling for the smoothness of f . Specifically, the function
in e.g., (5a) will be estimated as

f̂i|V \j = arg min
f∈H

T∑
τ=d+1

(xi[τ ]−f(χ̄\ij [τ ]))2+λ‖f‖2H (6)

where λ is a regularization parameter and ‖ · ‖H denotes the
norm ofH. From the representer theorem [28], it follows that
the optimal solution to (6) will be of the form

f̂i|V \j(χ̄\ij [t]) =

T∑
τ=d+1

βiτ κ(χ̄\ij [t], χ̄\ij [τ ]). (7)

Plugging now (7) into (6), the functional minimization prob-
lem boils down to estimating the vector βi := [βi(d+1), . . . ,

βiT ]>, as

β̂i = arg min
βi∈R(T−d)

‖x(d)
i −Ki|V \jβi‖2 + λβi

>Ki|V \jβi (8)

where x
(d)
i := [xi[d + 1], . . . , xi[T ]]>, [Ki|V \j ]tτ :=

κ(χ̄\ij [t], χ̄\ij [τ ]) stands for the kernel matrix, and we also
used the fact that ‖f‖2H = βi

>Ki|V \jβi. A closed-form
solution is available for (8), and it is given by

β̂i = (Ki|V \j + λI)−1x
(d)
i . (9)

From (5a), (7), and (9), it follows that the εi|V \j := [εi|V \j [d+

1], . . . , εi|V \j [T ]]> kernel-based prediction residual can be
expressed as εi|V \j = [f̂i|V \j(χ̄\ij [d+1]) . . . f̂i|V \j(χ̄\ij [T ])]>

−x(d)
i = Ki|V \jβ̂i − x

(d)
i , which after using (9) yields

εi|V \j = Ki|V \j(Ki|V \j + λI)−1x
(d)
i − x

(d)
i . (10)

Likewise, upon replacing Ki|V \j by Ki|V in (10), with
[Ki|V ]tτ := κ(χ̄′\ij [t], χ̄

′
\ij [τ ]), yields εi|V . The test statistic

Fij in (2) can then be obtained as the ratio of the sample
variances of εi|V \j and εi|V .

So far, we have seen how to assess the directional pres-
ence of an edge between any pair of nodes, while allow-
ing for nonlinear models capturing directional nodal depen-
dencies that reflect corresponding links. But can one afford
checking all possible pairs and directions in a brain network?
This is the subject addressed in the ensuing section.

2.2. Efficient inference of directional network links

In a |V|-node network there are m = |V|(|V| − 1) poten-
tial edges, and thus an equal number of hypothesis tests (cf.
(2)) to be performed. When multiple tests are jointly per-
formed, there is a loss in statistical power (joint true positive
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rate) which becomes more severe as the number of tests in-
creases [2]. In essence, in order to guard against a growing
number of false alarms, threshold adjustment procedures re-
quire an increased deviation of Fij from 1 in order to decide
H1, as m increases. This implies that for some tests that H1 is
true albeit with Fij close to 1, H0 will (incorrectly) be chosen
instead, which in turn will lead to a decrease of the joint true
positive rate.

On the other hand, brain networks are typically sparse [26,
25], and thus for the majority of testsH0 will be in effect. For
future use, let E0 denote the pairs of nodes for which edges are
absent in both directions. Had we known E0 a priori, it would
only be required to perform tests for the rest of the potential
edges. Our idea, here, is to estimate E0 using kernel-based
partial correlations [17], which are particularly well suited to
identifying edge absence. Letting x̃i := xi − x̂i, the sample
KPC coefficient of xi,xj with respect to {xk}k∈S is given by

ρ̂ij|S :=
(x̃i − ¯̃xi)

>(x̃j − ¯̃xj)

‖x̃i − ¯̃xi‖2‖ x̃j − ¯̃xj‖2
(11)

where x̂i is a kernel-based estimate of xi based on {χ>\ij [t]}
T
t=1

and ¯̃xi := T−1
∑T
t=1 x̃i[t]1, with 1 denoting the all-ones

vector. In short, (kernel-based) partial correlation aims at be-
ing robust against mediated dependencies between nodes. As
an example, consider a network of three nodes (i, k, j) [29],
where nodes i and j are mediated through node k. Avoiding
the false alarm of declaring an edge (i, j) in this case, is the
goal of KPC. In particular, KPC regresses xk out of xi and
xj , and as a result the correlation (and therefore the spurious
edge) between i and j vanishes. The proposed approach can
now be summarized in the following steps:

S1. Use (11) to find [P]ij = ρ̂ij|S .
S2. Hard threshold [P]ij to form the binary adjacency ma-

trix [B]ij
S3. For each (i, j) s.t. [B]ij = 1, estimate Fij , as per Sec.

2.1.
S4. For each Fij , estimate the p-value as detailed below.
S5. Using {pij} jointly perform NB := number of

nonzero entries of B tests (cf. (2)), correcting for multi-
ple comparisons as in [2].

S1 and S2 are performed using the methods described in
[17]. With Φ0 denoting the cumulative distribution function
of Fij under H0, the p-value of Fij is pij := 1 − Φ0(Fij).
To estimate the latter, Φ0 is estimated using the stationary
bootstrap scheme in [22] with the mean block length being
selected using the data-driven method of [23].

Rather than testing O(|V|2) hypotheses (cf. (2)), we
have now to test only for O(NB) directed edges. For
the latter, the criterion we adopt in S5 to jointly account
for the multiple comparisons is the false discovery rate
FDR := E[NFA/(NFA + NTP )], where NFA, NTP stand
for the number of false alarms and true positives, respectively.
In particular, we will follow the Benjamini-Hochberg method
in [2], which is skipped due to space limitations.

2.3. Multiple kernel learning

From (3) and (7) it is evident that the predictors {fi|V \j , fi|V }
are highly dependent on the choice of the kernel κ. Multi-
kernel learning aims at optimally choosing a combination of
kernels, from a preselected dictionary {κp}Pp=1, based on the
data [10]. Here we will consider nonnegative combinations
of the basis kernels, that is κ→

∑P
p=1 θpκp with θp ≥ 0 ∀p.

Moreover, an `2 regularizer will be applied on the weight vec-
tor θ := [θ1, . . . , θP ]> [7]. A detailed description of the opti-
mization task involved in estimating the optimal θ, as well as
a solution algorithm, can be found in [17].

3. NUMERICAL TESTS

3.1. Synthetic data

To evaluate the performance of the proposed approach,
synthetic fMRI datasets based on the (forward) dynamic
causal model (DCM) [9] were generated in a setup simi-
lar to that of [29]. Letting {ψi(t)}, {ui(t)} stand for the
neural and input time series of node i respectively, and
ψ(t) := [ψ1(t), . . . , ψ|V|(t)]

>, u(t) := [u1(t), . . . , u|V|(t)]
>

denote the corresponding vector time series, the DCM neural
network model can be described by

ψ̇(t) = δAψ(t) + u(t) (12)

with A denoting the (ground truth) connectivity matrix, and
δ being a scalar that adjusts neural lags; here δ = 20.

In order to simulate resting-state fMRI data, similar to
[29], ui(t) is obtained as a binary pulse train generated by
a Markov chain (20% average duty cycle), corrupted by zero-
mean additive white Gaussian noise of variance 10−2. Each
{ψi(t)} obtained as a solution to (12) is provided as the in-
put to the nonlinear balloon model for vascular dynamics [3],
the output of which is downsampled with period TR = 0.5s,
yielding the ith node data vector xi, comprising T = 190
samples.

The matrix A was chosen to be of dimensions 10 × 10,
with fixed diagonal entries Aii = −1 and randomly placed
non-zero entries, each drawn uniformly at random from the
interval [0.25, 0.6]. Finally, the choice of the DCM parame-
ters is described in detail in [17].

The set of basis kernels used consisted of a linear kernel
and 19 Gaussian kernels with variances {σ2

p}19p=1 taken from
the interval [10−6, 1]. The model order d was chosen us-
ing cross-validation for the proposed approach, whereas the
Akaike Information Criterion was applied in the linear and
nonlinear PGC cases, as per [12]. Finally, for each poten-
tial edge i → j, five-fold cross-validation was employed in
order to choose the regularization parameter λ, from the set
{0.1, 1, 10}.

Our tests were performed on 4 randomly generated net-
works, that on average comprised 6.5 edges. Moreover, the
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Fig. 1. ROC curves for directed edge inference obtained on
DCM-based synthetics. The blue curve corresponds to the
proposed approach, whereas the green and red ones stand for
linear and nonlinear PGC respectively.

distribution of the test statistics {Fij} was obtained using 100
bootstrap realizations. The performance of the proposed ap-
proach was compared to that of linear and nonlinear PGC us-
ing receiver operating characteristics (ROC) curves, obtained
by gradually increasing the maximum FDR level. Fig. 1 il-
lustrates the gain in (directed) edge detection performance of-
fered by our novel method. It is worth mentioning that both
existing PGC approaches yielded zero-edge graphs, for any
reasonable (up to 0.5) maximum FDR level, in 3 out of 4 sim-
ulated networks.

3.2. Real data

The behavior of our novel approach on real data was assessed
using resting-state (RS) fMRI data from a single subject. A
detailed description of the data is available in [14]. For the
purpose of our test, we focused on the (33, anatomically de-
fined) regions comprising the left hemisphere1 of the brain,
and used the first 6 mins. of the scan.

In particular, KPC was used first to estimate B, and thus
the pairs of nodes for which both potential edges were absent.
Let p(l)ij stand for the p-value of the test statistic estimated by
linear PGC for the potential edge j → i, and EB denote the
set of all (i, j) s.t. [B]ij = 1. The differences between the
p-values of the test statistics estimated by the proposed ap-
proach and linear PGC are highlighted in Fig. 2 , which plots
p
(l)
ij − pij for all (i, j) ∈ EB . The lack of ground truth, how-

ever, precludes us from assessing relative merits. Note also
that after correcting for multiple comparisons the proposed
approach identified 35 edges as opposed to zero for linear
PGC, in the aforementioned set; the maximum FDR level was
set to 0.4.

1In order to reduce the number of latent variables the observations from
the right hemisphere were also included in the regressors.
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Fig. 2. Comparing the proposed approach to linear PGC on
real RS-fMRI data. The (i, j)-th entry color-codes p(l)ij − pij .
Full names of the abbreviated regions can be found in [4, SI].

4. CONCLUSIONS

Motivated by the presumably nonlinear nature of the BOLD
signal, as well as the challenges arising in multiple testing as
the number of brain regions under consideration grows, the
present work proposes a kernel-based nonlinear approach for
identifying directed graphs by combining KPC with kernel-
based estimates of the PGC test statistics. The task of choos-
ing the kernel is tackled using multi-kernel learning. The
proposed approach outperformed both linear and nonlinear
PGC on DCM-based synthetics. Finally, tests on real resting-
state fMRI data demonstrate significant differences between
the proposed approach and linear PGC.
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