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ABSTRACT

Advances in information technology are making it possible
to collect increasingly massive amounts of multidimensional,
multi-modal neuroimaging data such as functional magnetic
resonance imaging (fMRI). Current fMRI datasets involve
multiple variables including multiple subjects, as well as
both temporal and spatial data. These high dimensional
datasets pose a challenge to the signal processing commu-
nity to develop data reduction methods that can exploit their
rich structure and extract meaningful summarizations. In
this paper, we propose a tensor-based framework for data
reduction and low-dimensional structure learning with a par-
ticular focus on reducing high dimensional fMRI data sets
into physiologically meaningful network components. We
develop a multiscale tensor factorization method for higher
order data inspired by hybrid linear modeling and subspace
clustering techniques. In particular, we develop a multi-scale
HoSVD approach where a given tensor is first permuted and
then partitioned into several sub-tensors each of which can be
represented more efficiently. This multi-scale framework is
applied to resting state fMRI data to identify the default mode
network from compressed data.

Index Terms— Higher Order SVD, resting state fMRI,
tensor

1. INTRODUCTION

Human brain is a complex network of functionally and struc-
turally interconnected regions. The advance in neuroimag-
ing technology has led to incredible amount of digital data
that can be used to study this complex network. This in-
cludes data from multiple subjects, multiple imaging modal-
ities, e.g., structural versus functional, and multiple experi-
mental conditions, e.g. in action or rest. Along with ad-
vances in the ability to obtain data, there has been an in-
crease in the numbers of multisite consortia for examining
the healthy and diseased brain [1]. Most of this data is shared
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openly with the data science community through platforms
such as “1000 Functional Connectomes” project, OpenfMRI
and COINS [2]. As such neuroimaging provides an attrac-
tive application site for data scientists to reduce, analyze and
interpret these large amounts of imaging data.

One particular application of interest is the study of
functional connectivity networks from neuroimaging data.
Resting-state functional connectivity magnetic resonance
imaging (fcMRI) studies constitute a growing proportion
of functional brain imaging literature [3, 4]. This approach
detects temporal correlations in spontaneous blood oxygen
level-dependent (BOLD) signal oscillations of widely sepa-
rated brain regions while subjects rest quietly in the scanner.
Biswal et al. [5] were the first to demonstrate meaningful
connectivity networks between the left and right hemispheric
regions of the primary motor network, suggesting ongoing
information processing between these regions even when the
subjects were not actively involved in a task. Several meth-
ods to process resting-state fMRI data have been proposed
including seed methods [5], principal component analysis
(PCA) [6], singular value decomposition, independent com-
ponent analysis (ICA) [7, 8] and clustering [9]. The different
methods have reported similar resting-state networks, includ-
ing the motor network, the visual network, two lateralized
networks consisting of superior parietal and superior frontal
regions and the default mode network (DMN) consisting of
precuneus, medial frontal and inferior parietal and temporal
regions [10, 11]. DMN is detectable using task-free fMRI
and consists of a set of brain regions that typically deactivate
during performance of cognitive tasks suggesting that activity
of this network is reflecting a default state of neuronal activity
of the human brain [12].

With the availability of big neuroimaging datasets, in par-
ticular resting state fMRI data, it is important to be able to
extract meaningful network components, such as the DMN,
from compressed data with reasonable computational effi-
ciency. Applying such an efficient compression and decom-
pression to the MRI sequence also gives the end user more
flexibility to apply any voxel-based or ROI-based analysis
afterwards. The early work on fMRI data compression fo-
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cused on adapting well-known lossless video compression
algorithms such as SPIHT and H.264 [13–16]. However, the
performance of these algorithms were solely evaluated based
on the compression ratio achieved without any attention to
the reproducibility of the network components extracted from
the original data. In recent years, tensors have been proposed
as a plausible tool to represent and analyze fMRI data and the
corresponding networks [17, 18]. However, the work in this
area has been limited to extending linear, low-rank matrix
methods such as ICA and SVD to the tensor case and has not
considered the use of tensors and tensor decompositions for
fMRI data reduction and compression. Therefore, these low-
rank approximations obtained by such linear methods may
not efficiently encode the data points belonging to nonlinear
manifolds [19, 20].

In this paper, we propose a new tensor based framework
for data reduction with a particular focus on reducing resting
state fMRI datasets. This multiresoultion analysis framework
aims to efficiently encode nonlinearities in tensor type data.
The proposed method is inspired by geometric multiresolu-
tion analysis (GMRA) [19] and its multiscale structure. Simi-
lar to GMRA, the proposed method constructs data-dependent
multiscale dictionaries to better represent the data. The pro-
posed algorithm consists of two main steps: 1) Constructing
a tree structure by decomposing the tensor into a collection of
permuted subtensors, and 2) Constructing multiscale dictio-
naries by applying higher order SVD (HoSVD) to each sub-
tensor. Finally, we apply the proposed algorithm to rfMRI
datasets and evaluate the success of recovering DMNs from
the compressed data with respect to the original data and com-
pare the improvement in the compression performance with
respect to regular HoSVD and 4-D Wavelet.

2. RELATION TO PRIOR WORK

This paper has two major contributions. First, we propose
a new way to decompose generic tensors. Recently, vari-
ous tensor decomposition techniques including hierarchical
Tucker decomposition and tensor train decomposition have
been proposed to reduce the memory requirements of Tucker
decomposition for big tensors [21, 22]. However, these ten-
sor decomposition techniques do not consider efficient en-
coding of data points sampled from nonlinear manifolds. In
this paper, we propose a new multiscale tensor decomposition
which better approximates nonlinearities in a tensor. Sec-
ond, we propose a new compression framework for fMRI
datasets. Recent studies on fMRI data compression depend
on well-known lossless video and image compression algo-
rithms without any particular attention to the structure of the
fMRI volume data [13, 15, 16]. However, in this study, we
consider multilinear local structure of tensor type data and
propose a tensor based approach to compress fMRI datasets.

3. MULTISCALE TENSOR DECOMPOSITION

In this section, we present a multiscale analysis procedure
named as Multiscale HoSVD (MS-HoSVD) for an Nth order
tensor X ∈ RI1×I2×...×IN . The proposed method recursively
applies the following two-step approach: (i) Low-rank tensor
approximation, (ii) Decomposing the residual (original minus
low-rank) tensor into subtensors.

A tensor X is decomposed using HoSVD as follows:

X = C ×1 U(1)×2 U(2)...×N U(N), (1)

where U(n)s are the mode matrices containing the left singular
vectors of X(n)s obtained by unfolding X along nth mode.
The low-rank approximation of X is obtained by

X̂0 = C0×1 Û(1)×2 Û(2)...×N Û(N), (2)

where Û(n)s are the truncated mode matrices obtained by
keeping the first rn columns of U(n) and C0 =X ×1 Û(1),>×2
Û(2),>...×N Û(N),>. The tensor X can now be written as

X = X̂0 +W0, (3)

where W0 is the residual tensor.
In this paper, we focus on a single scale analysis even

though the extension to multiple scales follows directly.
The residual tensor of 0th scale W0 is first decomposed
into subtensors as follows. Tensor W0 ∈ RI1×I2×...×IN is un-
folded across each mode yielding W0,(n) ∈ RIn×∏ j 6=n I j whose
columns are the mode-n fibers of W0. For each mode, rows
of W0,(n) are partitioned into cn non-overlapping clusters by
a clustering algorithm and the Cartesian product of the parti-
tioning labels coming from different modes yields index sets
of K = ∏

N
i=1 ci subtensors X1,k where k ∈ {1, 2, ..., K}.

Let Jn
0 be the index set corresponding to the nth mode

of W0 where Jn
0 = {1, 2, ..., In}, Jn

1,k be the index set of the
subtensor X1,k for the nth mode, where Jn

1,k ⊂ Jn
0 with n ∈

{1, 2, ... N}. Index sets of subtensors satisfy ∪K
k=1Jn

1,k = Jn
0

and Jn
1,k ∩ Jn

1,l = /0 when k 6= l for all k, l ∈ {1, 2, ..., K}. For
example, the index set of the first subtensor X1,1 can be writ-
ten as J1

1,1× J2
1,1× ...× JN

1,1 and the kth subtensor X1,k is ob-
tained by

X1,k(i1, i2, ..., iN) = W0(J1
1,k(i1), J2

1,k(i2), ..., JN
1,k(iN)),

X1,k = W0(J1
1,k× J2

1,k× ...× JN
1,k),

(4)
where in ∈

{
1, 2, ..., Jn

1,k

}
. To increase efficiency, subtensors

whose energy is below a certain threshold can be removed
from the multiscale structure. Then, low-rank approximation
for each subtensor is obtained by applying HoSVD as:

X̂1,k = C1,k×1 Û(1)
1,k×2 Û(2)

1,k ...×N Û(N)
1,k , (5)

where C1,k and Û(n)
1,ks correspond to the core tensor and low-

rank projection matrices of X1,k, respectively. X̂1 is the 1st
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scale approximation of X formed by mapping all of the sub-
tensors onto X̂1 as follows:

X̂1(J1
1,k× J2

1,k× ...× Jn
1,k) = X̂1,k. (6)

Similarly 1st scale residual tensor is obtained by

W1(J1
1,k× J2

1,k× ...× Jn
1,k) = W1,k, (7)

where W1,k = X1,k−X̂1,k. Therefore X can be rewritten as:

X = X̂0 +W0 = X̂0 +X̂1 +W1. (8)

The jth scale approximation of X is obtained by de-
composing W j−1,ks into subtensors X j,ks and fitting low-rank
model to each one of them. Finally, X can be written as:

X =
n

∑
i=0

X̂i +Wn. (9)

A pseudo code of the MS-HoSVD with 1-scale approximation
is given in Algorithm 1.

Algorithm 1 Multiscale HoSVD with 1-Scale Analysis
1: Input: X : tensor , C = (c1, c2, ..., cN): the desired number of

clusters for each mode.
2: Output: X̂ : 1-scale low-rank approximation of X , T: Tree

structure containing the MS-HoSVD decomposition of X .
3: Create an empty tree T .
4: C0,

{
Û(1), ..., Û(N)

}
← truncatedHOSVD(X ).

5: X̂0 = C0×1 Û(1)×2 Û(2)...×N Û(N).
6: W0←X −X̂0.
7: Add root node to the tree T containing C0 and Û(i)s where i ∈
{1,2, ...N}.

8: Create subtensors X1,k and index sets Jn
1,k from W0 where k ∈

{1, 2, ..., K}, n ∈ {1, 2, ..., N} and K = ∏
N
n=1 cn.

9: for k = 1 to K do
10: if

‖X1,k ‖
∏

N
n=1 |Jn

1,k|
≥ 0.01

‖X ‖
∏

N
n=1 In

then

11: C1,k,
{

Û(1)1,k , ..., Û(N)
1,k

}
← truncatedHOSVD(X1,k).

12: Add the node containing C1,k,
{

Û(1)
1,k , ..., Û(N)

1,k

}
and{

J1
1,k, ..., JN

1,k

}
to the tree T .

13: X̂1(J1
1,k× J2

1,k× ...× Jn
1,k) = X̂1,k.

14: end if
15: end for
16: X̂ = X̂0 +X̂1.

4. DATA DESCRIPTION AND PREPROCESSING

The data used in this paper is obtained from 1000 Func-
tional Connectomes Project [23] (http://www.nitrc.
org/projects/fcon_1000) which has aggregated pre-
viously collected test-retest imaging datasets from more than

36 labs around the world. The data acquired from above
url is referred to as Bangor which contains open-eye resting
state fMRI scans of 20 male participants aged between 19-38
(Magnet: 3T, TR = 2, 34 slices, 265 time points).

The data were pre-processed using CONN functional
connectivity toolbox [24]. First, structural images were co-
registered to the mean functional image for each subject and
normalized to MNI space. Then, slice timing correction and
motion correction were performed for each functional images.
The functional images were warped to Talairach Daemon at-
las [25] provided by CONN toolbox and smoothed with an
4-mm FWHM Gaussian kernel. Confounds such as motion
parameters obtained from reallignment and bold signals ob-
tained from white matter and CSF masks were regressed out
and band-pass (0.008-0.09 Hz) temporal filtering was applied
to functional images of each subject. After pre-processing,
the fMRI dataset can be represented as a 4-mode tensor
X m ∈ R109×91×91×265 for each subject m ∈ {1, 2, ..., 20}
where the first three modes correspond to the preprocessed
volume data and the fourth mode to time.

5. RESULTS

In this section, we evaluated the performance of the MS-
HoSVD in comparison to HoSVD and 4-D Wavelet for both
compression and error rate. X ms obtained from preprocess-
ing are decomposed by using MS-HoSVD yielding X̂ m

MS,
HoSVD X̂ m

HO and wavelet X̂ m
W , respectively. In the follow-

ing experiments, clustering is performed by by local subspace
analysis (LSA) [26] and the number of clusters along each
mode is chosen as ci = 4. The rank used in truncated HoSVD
is selected adaptively depending on the energy criterion. En-
ergy criterion determines the minimum number of singular
values kept during the SVD of the unfolded tensors along
each mode such that the cumulative energy is above a cer-
tain threshold. For MS-HoSVD, the energy thresholds are
selected as 0.7 and 0.95 for the SVDs computed for 0th and
1st scales, respectively. For HoSVD, the energy threshold
increased gradually from 0.990 to 0.999 with a step size of
0.0005 to compare the reconstruction error at similar com-
pression ratios (experiment-1) and the compression rate for
the similar error rates (experiment-2). For the 4-D Wavelet
compression, 2-scale 1-D temporal Wavelet transform fol-
lowed by a 2-scale 3-D spatial Wavelet transform with Db3
wavelet functions were applied. Significant wavelet coeffi-
cients were selected to have similar compression ratio close to
MS-HoSVD. In Table 1 the error rate refers to the normalized
tensor approximation error ‖X −X̂ ‖F

‖X ‖F and the compression

ratio is computed as # total bits to store X
# total bits to store X̂

. As seen in Table, 1,
MS-HoSVD provides reduced error (experiment-1) and bet-
ter compression than HoSVD (experiment-2) for 20 subjects.
MS-HoSVD also provides smaller reconstruction error than
4-D Wavelet (Table 1).
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Table 1. Average compression ratio (mean±st.dev) and re-
construction error (mean±st.dev) obtained by MS-HoSVD,
HoSVD and 4-D Wavelet over 20 subjects.

MS-HoSVD HoSVD HoSVD Wavelet
(Exp-1) (Exp-2)

Comp. 10.3275 10.3736 8.3068 10.3456
Ratio ±0.6287 ±0.5955 ±0.6427 ±0.1605
Rec. 0.0231 0.0404 0.0228 0.0493
Error ±0.0018 ±0.0061 ±0.0040 ±0.0026

Once low-rank approximations are obtained, mean ROI
signals Ym ∈ R88×265, Ym

MS ∈ R88×265, Ym
HO ∈ R88×265 and

Ym
W ∈ R88×265 corresponding to X m, X̂ m

MS, X̂ m
HO and X̂ m

W
are computed for each subject using Talairach Daemon at-
las. Connectivity networks for each subject m are denoted as
Am ∈ R88×88, Am

MS ∈ R88×88, Am
HO ∈ R88×88 , Am

W ∈ R88×88,
and are constructed by computing the correlation coefficient
between all ROIs in Ym, Ym

MS, Ym
HO and Ym

W , respectively.
Significant connections (p ≤ 0.01, Bonferroni corrected) for
each method were determined by performing t-tests for each
edge of connectivity matrices over subjects. Table 2 shows
the miss and false alarm rates for the connectivity networks
constructed using MS-HoSVD, HoSVD and 4-D Wavelet in
comparison to the original network. As it can be seen from
Table 2, we obtain lower error rates for MS-HoSVD com-
pared to HoSVD and Wavelet for all of the experiments.

Table 2. Comparisons of probability of miss (PMiss) and prob-
ability of false alarm (PFA) obtained by MS-HoSVD, HoSVD
and 4-D Wavelet.

MS-HoSVD HoSVD HoSVD Wavelet
(Exp-1) (Exp-2)

PMiss 0.0020 0.0033 0.0031 0.0023
PFA 0 0.0006 0 0

Fig.1 illustrates the DMN extracted from MS-HoSVD
based on the statistically significant pairwise correlation be-
tween all pairs of following ROIs: left and right superior
frontal gyri (SFG), medial frontal cortex (MFC), anterior cin-
gulate cortex (ACC), posterior cingulate cortex (PCC), left
and right angular gyri (AG), and left and right hippocampus.
As seen in Fig.1, there is strong connectivity between core
regions in the DMN, as the PCC, MeFC and ACC. DMNs
extracted from the original data and the compressed were
indistinguishable from each other indicating that even at a
compression ratio of 10:1 we can still detect the significant
network components without any error.

6. CONCLUSIONS

In this paper, we introduced a new tensor decomposition
technique for better compression of higher order fMRI ten-
sors using the local nonlinearities in the data. The proposed
approach constructs a tree structure by clustering the ten-
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Fig. 1. Default mode network obtained from MS-HoSVD.

sor across its modes and then decomposes the tensor into
lower dimensional subtensors. A low-rank approximation of
each subtensor is then obtained by HoSVD. The proposed
approach is applied to 4th order fMRI tensors and the con-
nectivity networks obtained from the compressed data are
compared to the original networks.

Future work will consider the extension of this approach
to higher order tensors, by including the different subjects as
another mode as well as to multiple scales. In this manner, it
would be possible to obtain a joint compression at the group
level for multiple subjects thus obtaining higher compression
ratios. Future work will also focus on fast implementation of
the proposed approach through parallel construction of sub-
tensors and paralel implementation of HoSVD.
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