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ABSTRACT
Owing to the rapidly increasing traffic demands on satellite connec-
tivity, the current exclusive frequency allocation is becoming obso-
lete. Instead, aggressive frequency reuse and interference mitiga-
tion techniques are promising ideas that both industry and academia
are investigating. This paper proposes an optimization precoding
technique for dealing with the multibeam interference due to the
aggressive frequency reuse. In contrast to general multiuser multi-
ple input multiple output (MIMO) schemes, multibeam satellite pre-
coding techniques call for frame-by-frame quadratically constrained
quadratic optimization of a large number of variables. We focus on
the multigroup multicast beamforming optimization problem, and
we propose to adopt a consensus-based alternating direction method
of multipliers (C-ADMM) approach, in order to mitigate complexity.
The proposed C-ADMM approach is shown to exhibit comparable
optimization performance at considerably lower complexity relative
to the prior state-of-art for the formulation considered.

Index Terms— Multibeam satellite systems, Precoding, Non-
convex QCQP, ADMM.

1. INTRODUCTION

The use of multibeam satellite systems is becoming attractive for
mobile operators as a cost-effective solution for providing broadband
connectivity everywhere. This is the case of Viasat 1, Echostar 17
and KaSat satellites which employ dozens of beams for providing in-
ternet access over a continental coverage area. Due to the forthcom-
ing ubiquitous high data rate demands, both academia and industry
are investigating novel schemes in order to increase the overall multi-
beam satellite capacity.

A very promising approach is the use of full frequency reuse
among beams jointly with precoding in order to reduce the multi-
beam interference [1]. As a result, the multibeam satellite system
can switch from the current frequency reuse factor 4 to full frequency
reuse, leading to a substantial increase of the user bandwidth. As
long as the precoding is able to keep a sufficiently large signal-to-
noise ratio (SINR) for each user, the multibeam system capacity will
be increased.

Multibeam satellite precoding can be categorized as the well-
known multiuser multiple-input-single-output (MISO) multigroup
multicast problem [2]. In other words, in a given time instant more
than one user is served at each beam in a multicast fashion [3]. The
user signals are precoded at the Earth station and they are trans-
mitted to the satellite through the feeder link. The satellite routes
the received precoded signals through an array fed reflector able to
radiate the multiuser information over a very large coverage area.

Apart from the well-known challenges in terrestrial multi-
antenna systems [2], multibeam satellite systems suffer from ad-

ditional ones [1]. Among them, the high number of transmit antenna
elements and beams limit the precoding designs due to optimization
complexity. For instance, current Echostar 17 deploys 60 beams,
requiring optimization of a complex vector of 3600 components.

Due to the challenges posed by the scale of the problem, current
multibeam precoding schemes have been limited to closed-form ex-
pressions [4, 5] and semidefinite relaxation (SDR) based techniques
over a reduced coverage area [6]. Similar to [6], the authors in
[7] proposed the use of the feasible point pursuit successive con-
vex approximation (FPP-SCA) [8] algorithm in order to decrease the
computational complexity relative to [6]. Although FPP-SCA has
lower worst-case computational complexity compared to the SDR
approach [8], it might still not meet the requirements of next gener-
ation satellite systems where the number of beams are expected to
increase.

Given this context, this paper proposes an optimization approach
to further reduce the computational complexity of multibeam satel-
lite precoding. This approach is based on posing the problem in
a consensus optimization form, on which the alternating direction
method of multipliers (ADMM) [9] is then applied. In contrast
to FPP-SCA, which employs successive approximations, C-ADMM
tackles the non-convex problem directly. Under certain conditions, it
can be shown that the algorithm converges to a Karush-Kuhn-Tucker
(KKT) point of this non-convex and NP-hard optimization problem.
Our experience suggests that these conditions are fulfilled in our ex-
periments. Furthermore, our results demonstrate that C-ADMM is
able to provide a high quality, sub-optimal solution with a perfor-
mance close to the solution obtained from FPP-SCA, yet at dramat-
ically lower computational complexity.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multibeam satellite system where the payload is
equipped with N feeds and serves a coverage area of K beams. All
beams share the frequency band and; in a given time instant, the
k-th beam simultaneously serves Qk users. In other words, at a give
time instant the scheduler selects a set of Qk users at the k-th beam
(same for all beams) and it constructs a codeword with information
to be transmitted to all Qk. Without loss of generality, we assume
that each beam serves the same number of users simultaneously and
it is equal to Q, i.e., Qk = Q,∀ k ∈ {1, . . . ,K}.
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Under this context, the received signal can be modelled as

y = Hx + n, (1)

where y ∈ CKQ×1 is a vector containing the received signals at each
user terminal. The vector n ∈ CKQ×1 contains the noise terms of
each user terminal and we assume that they are Gaussian distributed
with zero mean, unit variance and uncorrelated with both the desired
signal and the other users noise terms (i.e. E

[
nnH

]
= IKQ). The

channel matrix can be described as follows

H = AG, (2)

where A ∈ RKQ×KQ is diagonal matrix whose diagonal entries are
the atmospheric fading terms corresponding to the q-th user in the
k-th beam. Matrix G ∈ RKQ×N takes into account the rest of the
gain and loss factors. Its (kq, n)-th entry can be described as follows

[G]k,n =
GRakqn

4π
dkq

λ

√
KBTRBW

(3)

where dkqn is the distance between the q-th user terminal in the k-th
beam and the satellite, λ is the carrier wavelength, KB is the Boltz-
mann constant, BW is the carrier bandwidth, G2

R the user terminal
receive antenna gain, and TR the receiver noise temperature. The
term akqn refers to the gain from the n-th feed to the q-th user in
the k-th beam. It is important to mention that the matrix G has been
normalized to the receiver noise term.

We represent the channel matrix H in the following form

H = (h1, . . . ,hKQ)T , (4)

where hi ∈ RN×1 refers to the channel vector of the i-th user. For
notational convenience the channel vector of the q-th user in the k-
th beam is defined as hk,q = hkQ+q for k = 1, . . . ,K and q =
1, . . . , Q.

In order to minimize the multiuser interference generated by the
full frequency reuse and the on-board beamforming generation, pre-
coding is considered. Under this context, the transmitted symbol
vector is given by (5), where s ∈ CK×1 is a vector that contains
the transmitted symbols which we assume are uncorrelated with unit
norm

(
E
[
ssH

]
= I
)
, and matrix W ∈ CN×K is the linear precod-

ing matrix to be designed.

x = Ws. (5)

For notational convenience, matrix W can be decomposed as fol-
lows

W = (w1, . . . ,wK) , (6)

where wi is the precoding vector for the i-th user.
Our precoder design criterion is to minimize the total transmit-

ted power subject to minimum per-user SINR requirements and per-
antenna power constraints (PAPCs). Formally, the problem can be
stated as

minimize
w1,...,wK

K∑
k=1

‖wk‖2

subject to
minimum
q=1,...,Q

SINRk,q ≥ γk, ∀ k ∈ {1, . . . ,K},[
K∑
k=1

wkw
H
k

]
nn

≤ P,∀ n ∈ {1, . . . , N}

(7)

where

SINRk,q =
|hHk,qwk|2∑K

j 6=k |hHk,qwj |2 + 1
. (8)

γk is the target SINR of the k-th user and P is the maximum per-feed
transmit power. The constraints in (7) can be expressed as

minimize
v

‖v‖22

subject to

vHAk,qv + γk ≤ 0, ∀ k ∈ {1, . . . ,K}, ∀ q ∈ {1, . . . , Q},

vHBnv − P ≤ 0, ∀ n ∈ {1, . . . , N}
(9)

where
v =

(
wT

1 , . . . ,w
T
K

)T
, (10)

Ak,q = γk

K∑
j 6=k

(
IKN + Jj ⊗ hk,qh

H
k,q

)
− Jk ⊗ hk,qh

H
k,q, (11)

Bn = IK ⊗Mn, (12)

where IKN is a KN -dimensional identity matrix, Jj is a K × K
zero matrix whose j-th diagonal entry is equal to 1. In addition, ej
is a N -dimensional vector with all entries equal to 0 apart from the
j-th entry which is set to one. Finally, Mn is a N ×N zero matrix
whose n-th diagonal entry is equal to 1 and⊗ denotes the Kronecker
product.

From (9), it can be observed that the set of SINR constraints
might be non-convex since Ak,q can be indefinite for certain k and q.
In order to solve this problem, the system designer can opt to employ
the FPP-SCA method described in [8]. This scheme approximates
the original problem via a sequence of convex optimization problems
of the following form

minimize
v,s

‖v‖22 + ψ‖s‖1

subject to

vHA
(+)
k,q v + 2Re

{
v(t),HA

(−)
k,q v

}
− vHA

(−)
k,q v + γk ≤ [s](k−1)Q+q ,

∀ k ∈ {1, . . . ,K}, ∀ q ∈ {1, . . . , Q}

vHBnv − P ≤ [s]k , ∀ n ∈ {1, . . . , N}, ∀ k ∈ {KQ+ 1, . . . ,KQ+N}
[s]k ≥ 0,∀ k ∈ {1, . . . ,KQ+N}

(13)
where v(t) is the current iterate, s is the vector of slack variables,
and

A
(+)
k,q = γk

K∑
j 6=k

(
IKN + Jj ⊗ hk,qh

H
k,q

)
, (14)

A
(−)
k,q = Jk ⊗ hk,qh

H
k,q. (15)

Now, the optimization problem in (13) is convex as the non-convex
quadratic functions have been replaced by their corresponding con-
vex restrictions. The slack variables ensure problem feasibility at
every step, and we impose an `1-penalty on the slacks to ensure that
they are used sparingly. The algorithm requires a randomly gener-
ated point v(0) for initialization and proceeds by iteratively solving
(13) and then setting the solution to be the next iterate. This results
in a monotonically non-increasing cost function and once feasibility
is attained, (i.e., s = 0), it suffices to remove the slack variables
from (13) and continue the successive approximation process. In
this second stage of the algorithm, under certain regularity condi-
tions, every limit point of the generated iterates is a KKT point of (9)
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[10]. At each step of FPP-SCA, we require to solve a convex prob-
lem of the form (13), which can be posed as a Second-order cone
programming (SoCP) problem, and has substantially lower theoret-
ical worst-case complexity relative to SDR based approaches [8, 7].
Furthermore, the SDR techniques require a randomization algorithm
coupled with a power control problem to generate feasible solutions
for (9). Given these complexity considerations, we omit SDR from
comparison in our simulations and limit ourselves to FPP-SCA as a
performance benchmark. The stopping criteria for FPP-SCA was set
to be |‖v(t)‖2 − ‖v(t−1)‖2| ≤ εFPP-SCA.

3. CONSENSUS-ADMM

As discussed in [9], Consensus-ADMM (C-ADMM) can be applied
on the original problem (9) directly. Using variable splitting, C-
ADMM decomposes (9) into smaller, low complexity sub-problems
with simple, parallelizable updates. As a first step towards applying
this algorithm, we express (9) in the following consensus form.

minimize
v,{zl}Ll=1

‖v‖22

subject to

zHl Ak,qzl ≤ γl,∀ l = (k − 1)Q+ q,

∀ k ∈ {1, . . . ,K}, ∀ q ∈ {1, . . . , Q}

zHl Blzl ≤ P, ∀ l ∈ {KQ+ 1, . . . , L}
v = zl, ∀ l ∈ {1, . . . , L}

(16)

where L = KQ + N and the consensus variables {zl}Ll=1 serve as
local copies of the global variable v. The algorithm takes the form
of the following updates

v← ρ

1 + Lρ

(
L∑
l=1

(zl + ul)

)
(17a)

zl ← minimize
zl

‖zl − v + ul‖22 (17b)

subject to

zHl Ak,qzl ≤ −γl, l = kQ+ q, iff 1 ≤ l ≤ KQ,

zHl Bl−KQzl ≤ P, iff KQ+ 1 ≤ l ≤ L
ul ← ul + zl − v (17c)

where ul are the scaled dual variables of l-th constraint in (16). We
point out that sub-problem (17b) can always be optimally solved (ir-
respective of (non)-convexity) as it is a QCQP problem with a sin-
gle constraint. The form of the updates (17) allows the operations
(17b) and (17c) to be implemented locally in L distributed proces-
sors via global broadcast of v to all processors, while the update
of the global variable (17a) is performed by gathering all the local
updates {zl,ul}Ll=1.

The parameter ρ effects a trade-off between enforcing consensus
among the local variables {zl}Ll=1 and decreasing the cost function;
for high values of ρ, the algorithm focuses on finding a consensus
solution while for low values it favors the reduction of the cost func-
tion. The range of possible values of ρ is problem dependent. Ac-
cording to [9] whenever a feasible initial point is used, ρ can take low
values leading to a large reduction of the required iterations. A fea-
sible point can be obtained with the proposed C-ADMM technique

via changing operation (17a) by

v← 1

L

(
L∑
l=1

(zl + ul)

)
. (18)

Bearing this in mind, the proposed C-ADMM method has two
phases. First, a feasible point is obtained via the operation in (17)
but with the v update (18). The second phase consists of the op-
eration (17) given a small value ρ. Furthermore, if for a chosen ρ,
consensus amongst the local variables is achieved and the sequence
of the global variables generated is convergent, then any limit point
of the sequence satisfies the KKT conditions of (9) [9, Appendix A].

We now describe the particulars of solving the QCQP problem
(17b) at each iteration of C-ADMM. According to [9], the optimiza-
tion problem has a trivial solution z∗l = ξl = v − ul if ξl does
not violate the constraint in (17b); otherwise, it can be reduced to
finding a zero of the following scalar function

Φl(µl) =

K∑
i=1

N
λli(

1 + µlλli
) | [ξl]i |2 − cl, (19)

where λli is the i-th eigenvalue of matrix

Ak,q iff 1 ≤ l ≤ KQ, l = kQ+ q (20)

or
Bl iff KQ+ 1 ≤ l ≤ KQ+N. (21)

Similarly, cl takes values either −γl or P depending on the index l.
The optimal solution µ∗l can be obtained by solving (19) via bisec-
tion. Finally, z∗l is obtained via

z∗l = Ql (I + µ∗l Ll)
−1

QH
l ξl, (22)

where Ll is a diagonal matrix that contains the eigenvalues and Ql

the eigenvectors of either matrices (20) or (21) depending on l.
We note that a total of KQ+N consensus variables have to be

stored in memory at each iteration, which can prove to be very ex-
pensive, especially when large coverages areas are targeted. In order
to alleviate this problem, we propose to modify the C-ADMM algo-
rithm by allocating a single consensus variable zKQ+1 to the entire
set of PAPCs (KQ + 1 ≤ l ≤ L), instead of allocating one con-
sensus variable to each of the N PAPCs. The resulting sub-problem
associated with this update now becomes

minimize
zKQ+1

‖zKQ+1 − v + uKQ+1‖22

subject to

zHKQ+1Bl−KQzKQ+1 ≤ P, KQ+ 1 ≤ l ≤ N.

(23)

The key aspect of this update is that it admits a closed form solution
given by the Euclidean projection of ξKQ+1 onto the constraint set
of (23), which can be succinctly expressed as

z∗KQ+1 = ΠF
(
ξKQ+1

)
, (24)

where ΠF (·) denotes the Euclidean projection onto the convex set

F : zHKQ+1Bl−KQzKQ+1 ≤ P, KQ+ 1 ≤ l ≤ N. (25)

Consequently, the number of consensus variables is reduced from
KQ + N to KQ + 1. We note that while our proposed modifica-
tion decreases overall complexity, it does not come at the expense of
the simplicity of the updates. The overall algorithm is depicted in
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Algorithm 1.

4. SIMULATION RESULTS

In order to evaluate the performance of the proposed algorithm, we
consider a real coverage area of a geostationary satellite system. This
data has been obtained in a study performed by the European space
agency (ESA). We assume that at each time instant all bandwidth is
shared by all beams and Q users per beam and frame is served. The
system parameters are not detailed due to space limitations. The
reader can refer to [1] for further details. In all simulations we have
performed 400 Monte-Carlo runs with a Windows desktop with 4
Intel i5 cores and 4GB of RAM.

Data: H, {γk}Kk=1, P .
1 Initialize v, {zl}K+1

l=1 , {ul}K+1
l=1 ;

2 Compute the eigen-decomposition of Ak = QkLkQk for
k = 1, . . . ,K;

3 while v is not feasible do
4 v← 1

KQ+2

∑KQ+1
l=1 (zl + ul);

5 for i← 1 to KQ do
6 if ξHi Aiξi ≤ −γi then
7 zi ← ξi;
8 else
9 Obtain µ∗i so that Φi(µ

∗
i ) = 0 via the bisection

method.;
10 zi ← Qi (I + µiLi)

−1 QH
i ξi;

11 end
12 ui ← ui + zi − v;
13 end
14 zKQ+1 ← ΠF

(
ξKQ+1

)
;

15 uKQ+1 ← uKQ+1 + zKQ+1 − v;
16 end
17 while The successive difference of v is not smaller than
εADMM do

18 v← ρ
(KQ+1)ρ+1

∑KQ+1
l=1 (zl + ul);

19 for i← 1 to K do
20 if ξHi Aiξi ≤ −γi then
21 zi ← ξi;
22 else
23 Obtain µ∗i so that Φi(µ

∗
i ) = 0 via the bisection

method.;
24 zi ← Qi (I + µiLi)

−1 QH
i ξi;

25 end
26 ui ← ui + zi − v;
27 end
28 zKQ+1 ← ΠF

(
ξKQ+1

)
;

29 uKQ+1 ← uKQ+1 + zKQ+1 − v;
30 end

Algorithm 1: C-ADMM for multibeam satellite precoding

Figure 1 depicts the average computational time of FPP-SCA
and C-ADMM for different values of Q maintaining N = K = 4.
In both cases, εFPP-SCA = εADMM = 10−4. For the C-ADMM scheme
we set ρ = 25 and for FPP-SCA we set ψ = 1. We set a maximum
iteration counter of 104 iterations for C-ADMM. In case the method
does not converge for this number of iterations, we use a new random
initial point. Moreover, the maximum available power per feed is set
to 55 Watts and γk = γ = 0 dB, ∀ k ∈ {1, . . . ,K}. The figure re-
veals that both FPP-SCA and C-ADMM lead to very similar average
transmit power for all values of Q. However, it is also evident that
for all values of Q, C-ADMM requires much lesser computational
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Fig. 1: Average computational time (up) and total transmit power
(down) of FPP-SCA and C-ADMM for different values of Q.
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Fig. 2: Average computational time and transmit power for C-
ADMM

time compared to FPP-SCA (upto 3-fold improvement for large Q).
In this experiment, C-ADMM converged in all realizations.

The results of another experiment are depicted in Figure 2,
which shows the average computational time of a system with
N = K = 8 and Q = 2 for different values of minimum SINR (γ)
and with a maximum per feed transmit power of 55 Watts. Impres-
sively, C-ADMM is able to keep the average computational time
low even for this large coverage area. It is important to note that
the computational time and average transmit power are very similar
for all values of γ. In contrast to the previous setting, C-ADMM
does not converge for certain realizations, so re-initialization was
required in this case, which resulted to an average of 1.3 trials per
realization over all values of γ.

5. CONCLUSIONS

In this paper, we cast the multibeam satellite precoder design op-
timization problem in the form of multigroup multicasting with
PAPCs. The C-ADMM algorithm was used to obtain high qual-
ity, sub-optimal solutions for this non-convex and NP–Hard opti-
mization problem. C-ADMM directly tackles the problem by first
reformulating it in consensus optimization form, which results in
QCQP sub-problems with a single constraint. These problems can
always be solved to global optimality in an efficient manner, even
when they lack convexity. We proposed a modification to C-ADMM
which reduces overall complexity in our context while preserv-
ing the simplicity of the updates. Numerical simulations reveal
that the proposed scheme exhibits lower computational complexity
and distributed implementation capabilities when compared to the
state-of-the-art, while providing very similar performance results.
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