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Abstract—In this paper, we consider optimum array config-
urations for multiple satellite signals in interference-free envi-
ronment. The two measures of maximum output signal-to-noise
ratio (SNR) and equal gains towards all sources incident on the
array are considered for the array design. As it is computation-
ally exhaustive to enumerate all configurations and implement
eigenvalue decomposition to compare respective maximum eigen-
values, we resort to the relaxation of maximizing the lower bound
of the output SNR. Subsequently, an iterative linear fractional
programming method is proposed to maximize the spectral norm
of the source covariance matrix. Simulation examples confirm
that the array configuration plays a vital role in determining
the array processing performance in interference-free scenarios.
The selected optimum subarrays achieve maximum performance
preservations with a dramatically reduced cost.

Index Terms—output SNR, quiescent scenario, linear fractional
programming, satellite network

I. INTRODUCTION

Adaptive antenna arrays are capable of performing spatial
filtering, which makes them an effective tool for combating
interferences while providing certain gains towards desired
sources. This performance requirement arises in diverse ap-
plications, such as radar, satellite network, sonar and radio
astronomy to list a few [1]–[3]. The effect of array config-
urations on interference nulling performance in the case of
single desired source was investigated in our previous work
[4]–[6], where the output signal to interference plus noise
ratio (SINR) is directly related to array configurations through
a parameter characterizing the spatial separation between the
desired source and the interference subspace. However, there
is no much work in the literature examining the problem
of optimum array reconfiguration and antenna placements
for receiving multiple desired sources in interference-free
environment or quiescent beamforming.

In this paper, we consider the general case in which the
dimension of the desired signal subspace is arbitrary and not
necessarily confined to a unit value. This case is encountered in
multiple source emitters in the field of view with unknown or
uncertain directions of arrival. It also occurs for scattered and
distributed sources in astronomy [7], [8], and source spreading
and fluctuation in multipath [9]. For these cases, we formulate,
analyze, and solve for the two optimum array configurations
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which provide the maximum output signal to noise ratio (SNR)
and equal gains towards all potential incoming sources are
analyzed. This constitutes the main novelty of this paper.
Albeit a general problem, we gear our antenna selection and
placement approach towards satellite navigation application.

With multiple source signals impinging on the receiver, the
optimum weight which provides the maximum output SNR
is the principal eigenvector of source covariance matrix [10].
However, the beamformer equipped with the optimum weight
does not point at any particular direction, as eigenvectors
are not steering vectors, and as such, are not directional.
We introduce the concept of generalized inner-product to
quantitatively analyze the structure of the optimum weight
vector. As implementing eigenvalue decomposition to each
possible configuration is prohibitively exhaustive, we resort to
the relaxation of maximizing the lower bound of the maximum
output SNR. We then propose an iterative linear fractional pro-
gramming method for solving the antenna selection problem,
which is non-convex as it maximizes a quasi-convex problem.
Clearly, the optimum weight does not guarantee equal gains
towards all sources, which may result in performance loss
in some cases such as satellite network, where all satellite
signals are identically weak and equally important [11], [12].
Thus, it becomes necessary to investigate the optimum sparse
array configuration that maximizes the output SNR while
providing equal sensitivities towards all sources. Thus, we
also investigate the optimum beamformer which yields the
maximum output SNR while providing equal gains towards
all incoming sources.

The rest of this paper is organized as follows: We formulate
the problem in section II, and analyze in section III the
structure of the optimum weight vector utilizing the general-
ized inner product. Formulation of antenna selection problem
is elucidated in section IV. Simulation results, presented in
section V, validate the effectiveness of proposed methods.
Finally, concluding remarks are provided in section VI.

II. PROBLEM FORMULATION

Consider a linear array of N isotropic antennas with posi-
tions specified by multiple integer of unit inter-element spacing
xnd, xn ∈ N, n = 1, · · · , N . Suppose that p emitter, or
satellite, signals are impinging on the array from directions
Θ = {θ1, · · · , θp} with spatial steering vectors specified by,

uk = [ejk0x1d cos θk , · · · , ejk0xNd cos θk ]T , k = 1, · · · , p, (1)
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respectively. The wavenumber is defined as k0 = 2π/λ with λ
being the wavelength and T denotes transpose operation. The
received signal at time instant t is given by,

x(t) = Us(t) + n(t), (2)

where U = [u1, · · · ,up] ∈ CN×p is the source array manifold
matrix. In the above equation, s(t) ∈ Cp denotes the source
vector and n(t) ∈ CN represents the received noise vector.
The output of the N -antenna beamformer is given by,

y(t) = wHx(t), (3)

where w ∈ CN is the complex vector of beamformer weights
and H stands for Hermitian operation. With additive Gaussian
noise, i.e. n(t) ∼ CN (0, σ2

nI) and in the absence of interfering
sources, where σ2

n is noise power level, the optimal weight
vector for maximizing the output SNR is given by [10],

wopt = P{Ru} = P{URsUH}. (4)

where P{·} denotes the principal eigenvector of the matrix, Ru
is defined as Ru = URsUH with Rs = E{s(t)sH(t)} denoting
the source auto-correlation matrix. There are no restrictions on
the source signals, that is, the sources can be either coherent
or uncorrelated.

The corresponding output SNR is,

SNRopt =
wHoptRuwopt

wHoptRnwopt
=
λmax{Ru}

σ2
n

=
‖Ru‖2
σ2
n

. (5)

Clearly, array configuration affects the output SNR of the
optimum beamformer wopt through the term of ‖Ru‖2 which
is evident in Eq. (5). The focus of this work is to analyze
the structure of the optimum beamformer in interference-
free or quiescent environments and propose two methods of
array reconfiguration for optimum output performance through
antenna selection.

III. STRUCTURE OF THE OPTIMUM BEAMFORMER

The optimum beamformer in Eq. (4) is not directional. This
means that the beamformer does not point towards a particular
direction spatially. Clearly, the optimum beamformer is a
linear combination of the source steering vectors, i.e. wopt =∑p
k=1 βkuk. Note that the coefficients βk 6= uHk wopt, k =

1, . . . , p, as the steering vectors are not orthogonal basis.
Next, we introduce the concept of generalized inner product
to analyze the structure of the optimum beamformer.

Denote the subspace spanned by the source steering vectors
as Ũ = span{U} = span{u1, . . . ,up}. The generalized inner
product between any vector u ∈ Ũ and uk, k = 1, . . . , p is
defined as, [13]–[15]

〈u,uk|ui2(k), . . . ,uip(k)〉 (6)
= 〈u,uk|u1, . . . ,uk−1,uk+1, . . . ,up〉
= |UH(k)U|,

where {i2(k), . . . , iq(k)} = {1, . . . , q} \ {k} and U(k) is
the matrix with the kth column replaced by the vector
u, | · | means the determinant of the matrix. Accordingly,
the generalized norm is defined as ‖u1,u2, . . . ,up‖ :=

〈u1,u1|u2, . . . ,up〉1/2 = |UHU|1/2, which represents the
square root of the volume of the p-dimensional parallelepiped
spanned by U. The decomposition of the optimum beamformer
is explained by Theorem 1.

Theorem 1: For an arbitrary set of source steering vectors
{u1, . . . ,up}, the optimum beamformer wopt in Eq. (4) can be
expressed as,

wopt =

p∑
k=1

βkuk, (7)

where

β∗
k =
〈wopt,uk|ui2(k), . . . ,uip(k)〉

‖u1, . . . ,up‖2
=
|UH(k)U|
|UHU|

, (8)

where U(k) is the matrix with the kth column of U replaced
by wopt and {i2(k), . . . , ip(k)} = {1, . . . , p} \ {k}.

The proof of Theorem 1 is provided in section VII-A. The
coefficient βk, k = 1, . . . , p reflects the gain of the optimum
beamformer towards the kth source.

IV. ANTENNA SELECTION FOR OPTIMUM SNR

Denote an antenna selection vector z ∈ {0, 1}N with
“zero” entry denoting the corresponding antenna discarded
and “one” entry for a selected antenna. As steering vectors
are directional, the implementation of antenna selection is
clearly expressed as ui(z) = ui � z, i = 1, . . . , p with
� denoting element-wise product and, accordingly, U(z) =
[u1(z), . . . ,up(z)]. Ideally, the antenna array should be recon-
figured through antenna selection z such that the spectral norm
of the reduced-dimensional source auto-correlation matrix
‖U(z)RsUH(z)‖2 is maximum. However, since maximizing
the spectral norm of a matrix with respect to the selection
variable z is a non-convex optimization problem, we resort to
the following relaxation method.

Denote the maximum eigenvalues of the source auto-
correlation matrix U(z)RsUH(z) of a full array (z = 1)
and a selected subarray as λ0 and λ̂0, respectively, with
their corresponding principal eigenvectors as e0 and ê0. Then,
e0 =

∑p
i=1 βui and ê0 =

∑p
i=1 β̂ui(z) with β̂ denoting the

coefficient vector corresponding to the subarray. The source
auto-correlation matrix upon implementing antenna selection
can be written as,

U(z)RsUH(z) = E(z)ΛEH(z), (9)

where Ru = EΛEH for the full array, with λ0 and e0
denoting the maximum eigenvalue and principal eigenvector
respectively. The set of vectors E(z) constitutes a basis of
the reduced-dimensional source subspace with corresponding
coefficients in the diagonal of the matrix Λ. Furthermore,
the vector e0(z) still possesses the largest coefficient λ0,
thus we can utilize e0(z)/‖e0(z)‖ to approximate the prin-
cipal eigenvector of the selected subarray. Note that these
bases are not eigenvectors due to their non-orthonormality,
i.e., EH(z)E(z) 6= I although E(z)EH(z) = I. Thus, we
approximate the gain vector of the subarray with β, i.e.,

ê0 ≈ e0(z) =

p∑
i=1

βui(z). (10)
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The lower bound of the optimum output SNR of the selected
subarray can, therefore, be established as

eH0 (z)

‖e0(z)‖
Ru(z)

e0(z)

‖e0(z)‖
≤ êH0 Ru(z)ê0. (11)

The problem of antenna selections for maximizing the opti-
mum SNR in quiescent conditions is formulated as,

max
z

eH0 (z)Ru(z)e0(z)

‖e0(z)‖2
, (12)

s.t. 1T z = K,

0 ≤ z ≤ 1.

We relax the binary constraints z ∈ {0, 1}N in the third line
of Eq. (12) to a box constraint 0 ≤ z ≤ 1, as the objective
in Eq. (12) is quasi-convex and the global maximizer of a
quasi-convex function locates at the extreme points of the
polyhedral [16], [17]. Define the vector ē0 = e∗0 � e0 and the
matrix Ū = [e∗0 � u1, . . . , e∗0 � up] with � denoting element-
wise product and ∗ being conjugate operation. This leads to
the simplification ‖e0(z)‖2 = zT ē0 and eH0 (z)Ru(z)e0(z) =

zT ŪRsŪ
Hz, which in turn allows Eq. (12) to be rewritten as,

max
z

zT ŪRsŪ
Hz

zT ē0
, (13)

s.t. 1T z = K,

0 ≤ z ≤ 1.

Clearly the problem represented by Eq. (13) is still non-
convex. We propose an iterative linear fractional programming
method which linearizes the numerator globally in each itera-
tion [18]. The problem in the (k+ 1)th iteration based on the
kth solution zk is formulated as

max
z

−zkT ŪRsŪ
Hzk + 2zkT ŪRsŪ

Hz
zT ē0

, (14)

s.t. 1T z = K,

0 ≤ z ≤ 1.

The linear fractional programming in Eq. (14) can be further
transformed into linear programming as [19], [20],

max
v,α

−zkT ŪRsŪ
Hzkα+ 2zkT ŪRsŪ

Hv, (15)

s.t. 1T v−Kα = 0,

v ≥ 0, v− α ≤ 0,

α ≥ 0, ēT0 v = 1.

Finally, we obtain the selection vector z = v/α. Note that the
optimum weight in Eq. (4) does not guarantee the same again
towards each source as exhibited in Fig. 3 in the simulation
section. If a desired specific gain toward each source is
required, for example equal gains, then the coefficient vector
β̂ becomes known. In this case, the antenna selection problem
can be formulated as

max
z

β̂HUHdiag(z)Rudiag(z)Uβ̂
β̂HUHdiag(z)Uβ̂

(16)

s.t. 1T z = K,

0 ≤ z ≤ 1.

Utilizing the following property of Khatri-Rao product ◦,

Adiag(x)b = (bT ◦ A)x, (17)

we obtain

UHdiag(z)Uβ̂ = [(Uβ̂)T ◦ UH ]z. (18)

Define the vector β̄ = (Uβ̂) � (Uβ̂)∗ and the matrix ¯̄U =
(Uβ̂)T ◦ UH . The problem Eq. (16) can be rewritten as

max
z

zT ¯̄UHRs ¯̄Uz
zT β̄

(19)

s.t. 1T z = K,

0 ≤ z ≤ 1.

The iterative linear fractional programming can then be uti-
lized to obtain the optimal beamformer with a desired gain.

V. SIMULATIONS

In this section, simulation results are presented to validate
the proposed array reconfiguration strategy and antenna selec-
tion method.

A. Example 1

Consider K = 8 available antennas and N = 16 uniformly
spaced positions with inter-element spacing of d = λ/2.
There are three uncorrelated source signals impinging on the
array from directions θ1 = 65◦, θ2 = 75◦, θ3 = 115◦ with
SNR being 6dB, 3dB and 0dB, respectively. Assuming that
all the information of the sources is known to the receiver,
thus the optimum weight can be calculated as the principal
eigenvector of the source auto-correlation matrix as stated in
Eq. (4). Utilizing the concept of generalized inner product in
section III, we can decompose the optimum weight in terms
of the source steering vectors as shown in Eq. (7), where the
coefficient vector β is,

β = [0.14 + j0.94, 0.14 + j0.12, 0.02]T . (20)

Clearly, the optimum weight puts more emphasis on the
first source compared with the third one so as to obtain the
maximum output SNR. We enumerate all the 12870 different
configurations based on three metrics: the output SNR in the
right hand side of Eq. (11), the lower bound in the left hand
side and the output SNR of the equal gain beamformer in Eq.
(16). The results are plotted in Fig. 1 in an ascending order
of the output SNR. The following remarks are in order: (1)
The optimum array can attain 4.5dB output SNR, which is
1.5dB higher than the worst array configuration. This verifies
the important role of array configuration for determining the
output SNR in interference-free and quiescent scenarios. (2)
The lower bounds of the optimum SNR are tight for all
configurations and the distance between them is no more than
0.6dB. Note that the distance between the maximum SNR
among all the configurations and its lower bound is only
0.04dB. (3) The equal gain beamformer performs worse than
that of the optimum weight in terms of output SNR. The
maximum output SNR of the equal gain beamformer is 3.7dB,
however, it is the best array that can guarantee equal gain
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towards each source. (4) The array configuration also affects
the performance of the equal gain beamformer significantly,
where the performance difference between the best and the
worst array is 5.81dB.
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Fig. 1. The optimum output SNR, its lower bound and the output SNR of
equal gain beamformer for all configurations.
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Fig. 2. The selected optimum arrays: (a) the optimum 8-antenna array
for maximum output SNR; (b) the optimum 8-antenna array for equal gain
towards each source.
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Fig. 3. The beampatterns of the two arrays (a) and (b) in Fig. 2.

We also implement the two proposed antenna selection
methods of the optimum array configurations for maximum
output SNR in Eq. (12) and equal gain towards each source
in Eq. (16) respectively. The two selected 8-antenna optimum
arrays are shown in Fig. 2 (a) and (b), respectively. The two
selected arrays are exactly the optimum ones obtained by
enumeration, which validates the effectiveness of the proposed
iterative linear fractional programming method. The beampat-
terns of the two arrays are depicted in Fig. 3, which fully
demonstrates the advantages of the array (b). Note that the
weight vector for array (a) is calculated according to Eq.
(4) and that for array (b) is according to Eq. (7) with the
coefficient vector β = [1, 1, 1]T .

B. Example 2

Next, we consider a scenario in satellite network. Assuming
that prior information of the sources, such as the exact arrival
directions and the power level, is unavailable. Consider three
uncorrelated sources impinging on a 20-antenna uniform linear
array (ULA) from the angular sectors [60◦, 65◦], [110◦, 115◦]
and [160◦, 165◦] respectively. We sample each angular sector
and calculate an optimum 10-antenna array assuming equal
source power. We assume one set of weights, in lieu of separate
sets of weight for each satellite. The optimum array is shown

in Fig. 4. We implement 200 trials, where a set of random
angles are uniformly generated in the three angular sectors.
We compare the output SNR values of the selected 10-antenna
subarray and the full 20-antennas ULA, and plot the SNR
difference in Fig. 5 (a). Clearly, the subarray configuration
can halve the hardware cost and reduce the computational
complexity by 87.5%, while the performance degradation is
only 0.3dB in some scenarios with the worst case of 1.33
dB. We also compare the average correlation output of the
200 trials between the selected subarray and the full array
in Figs. 5(b) and (c), which exhibits tantamount acquisition
performance. This example again affirms the important role of
array configuration in determining the adaptive beamformers’
performance.

0 2 4 6 8 10 12 14 16 18 20

optimum 10-antenna array with an approximate arrival angle sector

Fig. 4. The selected 10-antenna optimum subarray.
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Fig. 5. (a) The output SNR difference between the full array and the subarray;
(b) Average acquisition performance of the subarray in Fig. 4; (c) Average
acquisition performance of the full array.

VI. CONCLUSIONS

We investigated the problem of optimum array configura-
tions of adaptive beamformers in interference-free environ-
ments and quiescent operating conditions. A tight lower bound
of the optimum SNR was derived and an iterative linear
fractional programming was proposed to solve the antenna
selection problem. Simulation results demonstrated that array
configurations can be designated as an additional degree of
freedom to improve the output SNR without increasing cost.

VII. APPENDIX

A. Proof of Theorem 1
Utilizing Eq. (7), the inner-product between wopt and the

steering vector ul, l = 1, . . . , p can be written as,

〈wopt,ul〉 =

p∑
k=1

β∗
k〈uk,ul〉, l = 1, . . . , p. (21)

Considering all p generalized inner products and formulating
them into a matrix form, we obtain

Aβ∗ = g, (22) 〈u1,u1〉 . . . 〈up,u1〉
...

. . .
...

〈u1,up〉 . . . 〈up,up〉


 β∗

1
...
β∗
p

 =

 〈wopt,u1〉
...

〈wopt,up〉

 .
According to Cramer’s rule and utilizing Eq. (6) yields

β∗
k =
|AT(k)|
|A|

=
|UH(k)U|
|UHU|

=
〈u,uk|ui2(k), . . . ,uip(k)〉

‖u1, . . . ,up‖2
. (23)

The matrix A(k) is obtained by replacing the kth column of
A by the vector g. �
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