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ABSTRACT

Ultrasound elastography involves imaging tissue while it undergoes
deformation and inferring its mechanical properties from the defor-
mation pattern. The initial deformation in the tissue is typically in-
duced through an external mechanical force, for example, by exert-
ing a slight pressure using an ultrasound probe or by applying an
acoustic radiation force (ARF) against the tissue. The ARF excites
the tissue locally, which leads to the propagation of a shear-wave.
The goal of the shear-wave elastography is to estimate the speed of
the shear-wave that is explicitly related to the elasticity of tissue. We
formulate tissue displacement estimation as an optimization problem
and propose a computationally efficient approach to estimate the dis-
placement field. A novel algorithm based on the minimization of a
regularized cost function using higher-order analytical minimization
(HAM) coupled with the second-order Taylor series approximation
is proposed. Our algorithm first computes an integer displacement
field based on dynamic programming (DP) that provides the global
optima, which is then refined iteratively to obtain the subpixel dis-
placement estimate. We test the proposed algorithm on real experi-
mental data obtained from a tissue-mimicking phantom and illustrate
the superiority of our approach over some commonly used elastog-
raphy techniques using signal to noise ratio (SNR) comparisons.

Index Terms— Shear-Wave, Analytical Minimization, Regular-
ization, Elastography, Ultrasound, Dynamic Programming.

1. INTRODUCTION

Imaging the tissue elasticity is highly desired in numerous medical
applications such as detecting cancerous tumours and guiding biop-
sies. During the past two decades, several ultrasound (US) imaging
techniques have been proposed to estimate the mechanical proper-
ties of the tissue [1–3]. These techniques are generally referred to as
ultrasound elastography and are broadly categorized into two differ-
ent groups of quasi-static and dynamic elastography. In quasi-static
elastography [4, 5], a slow, relatively static compression is applied
to the tissue and the US radio frequency (RF) signals acquired be-
fore and after the compression are correlated to estimate tissue dis-
placements. In dynamic elastography [6–9], tissue deformation hap-
pens at a much faster rate and the propagation of mechanical waves
(compressional or shear in nature) are used to derive the displace-
ments in the tissue. Although both static and dynamic approaches
use ultrasound to track the displacements, the difference lies in the
applied stress, whether it is quasi-static or due to the propagation
of the shear wave. Depending on the type of excitation, dynamic
elastography itself can be further categorized into several different
subgroups, including shear-wave imaging (SWI), which generates a
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deep “push” in the tissue by applying a non-invasive acoustic radia-
tion force (ARF) [8–10]. The resulting disturbance propagates side-
ways through the tissue in the form of a shear wave that can be mon-
itored using the US RF data collected immediately before and after
the ARF excitation. In this paper, we focus on dynamic shear-wave
elastography through the results are generalizable to other variations
of elastography.

Mathematically speaking, the radiation force [10] generated by
a propagating acoustic wave in soft tissue is given by

F =
2αI

c
(1)

where I denotes the temporal average intensity at a given point in
space, α is the absorption coefficient of the medium, and c the speed
of sound. The radiation force for a given region of excitation (ROE)
is uniform if all three parameters {I, α, c} are relatively constant
across the ROE. Alternatively, the variations in these parameters rep-
resent the inhomogeneity in the medium and can be used to derive
the mechanical properties of the tissue.

In SWI, a localized and focused radiation force F is applied to
the region of interest to induce a shear wave that travels orthogonal
to the probing radiation. When the excitation is focused at a specific
tissue site, transient shear waves are propagated away from the ROE
[6]. During the propagation phase, the displacement field and the at-
tenuation of the propagating wave, collectively, contain useful infor-
mation on the local mechanical properties of the tissue. The displace-
ment field in the tissue is often tracked by a transducer [11] housed in
an ultrasound machine that produces images of the region at a high
frame rate. By comparing successive frames, the tissue displacement
(or, alternatively the propagation velocity of the shear wave) can be
determined both spatially and temporally using a correlation-based
approach [12]. Normalized cross-correlation (NCC) [13], a common
approach used for estimating tissue displacement, has shown poor
estimation results when applied to radio frequency (RF) data. It also
has a significant computational complexity.

An alternative to normalized cross correlation for shear mo-
tion estimation is the regularized cost function [14, 15]. These
regularization-based approaches calculate subsample displacement
and are computationally efficient. In terms of time, they are afford-
able and appropriate for real-time clinical applications. The paper
seeks to further improve the subpixel accuracy of the displacement
field estimate over [14, 15] by incorporating a higher order Taylor
series expansion into the cost function. As we will show, this is not
trivial since inclusion of higher order terms generates an intractable
optimization problem. We propose a novel approach that addresses
this issue and leads to a computationally efficient technique. A sec-
ond contribution of the paper is to apply the optimization method
proposed in [14,15] for the first time to SWI. Inclusion of the higher
order terms substantially improves the results, as observed visually
and measured quantitatively by the signal to noise ratio (SNR).
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2. ESTIMATION OF TISSUE DISPLACEMENT FIELD

Assume I1(i, j) and I2(i, j) are two successive ultrasound frames
prior to and after undergoing deformation. Symbol I denotes the
intensity of the discretized sample (referred to as a pixel) of the im-
age with i = 1, · · · ,m and j = 1, · · · , n representing the axial
and lateral locations of the pixel. The goal of the tracking method is
to find two matrices A and L such that their (i, j)th elements, i.e.,
a(i, j) ∈ A and l(i, j) ∈ L provide estimates of the axial and lateral
displacement for pixel (i, j). In Subsection 2.1, we review related
work in dynamic programming (DP) [15], which calculates integer
displacements for all samples given I1(i, j) and I2(i, j). DP is an ef-
ficient method for global optimization [16] and has been used exten-
sively in computer vision including solving for optimal deformable
models. In Subsection 2.2, we introduce analytic minimization (AM)
[14], which takes the integer output values of the DP stage and es-
timates the displacements at a subpixel level in both axial and lat-
eral directions using a hierarchical search approach. Subsection 2.3
introduces our proposed method based on a refinement of the AM
approach that computes the displacement estimates more accurately.

2.1. Dynamic Programming

In order to present the general DP formulation [17], we consider a
single column j (an RF-line) of the image I1(i, j) prior to deforma-
tion. Let ai and li denote the axial and lateral displacement of the ith

sample of the RF-line in column j. In the DP elastography, a regular-
ized cost function is generated by adding the prior of displacement
continuity (the regularization term) to an amplitude similarity term.
For column j, the displacement continuity term is given by

R(ai, li, ai−1, li−1) = αa(ai − ai−1)2 + αl(li − li−1)2, (2)

which restricts the displacement of the sample i (i.e. ai and li) to
be similar to the displacement of the previous sample i − 1 (i.e.,
ai−1 and li−1). Symbols αa and αl are axial and lateral regulariza-
tion weights, respectively, while R(ai, li, ai−1, li−1) indicates the
dependency of ai and lj on j. The regularized cost function as for-
mulated in [15] for column j is then generated as

C
(p)
j (ai, li, i) =

[
I1(i, j)− I2(i+ ai, j + li)

]2 (3)

+min
da,dl

(C(p)
j (da, dl, i−1) + C

(p)
j−1(da, dl, i)

2
+R(ai, li, ai−1, li−1)

)
where da and dl are displacement variables in the axial and lateral
directions, and the superscript p refers to the pixel displacement es-
timation (as opposed to subpixel). Set {da, dl} are the optimization
parameters used to minimize the term within the bracket. After cal-
culating C(p)

j , for i = 2, · · · ,m, it is minimized at i = m with
respect to am and lm. The ai and li values that have minimized the
cost function at i = m are then traced back to i = 1 resulting in
integer values of ai and li for all samples of j th line. The process
is continued for the next line (j + 1)th line until the integer valued
displacements for the entire image are calculated.

2.2. Analytic Minimization (AM)

In the previous work [14], integer displacement estimates in the axial
direction ai and in the lateral direction li for i = 1 · · ·m samples
of an RF-line are calculated. The process starts with a line in the
middle of the image, referred to as the seed line, and repeated to the
neighbouring lines until the entire image is covered. To estimate the

subsample displacements, the new cost function is introduced

C
(s)
j (∆a1, · · · ,∆am,∆l1, · · · ,∆lm) = (4)

m∑
i=1

{
[I1(i, j)− I2(i+ ai + ∆ai, j + li + ∆li)]

2

+α(ai+∆ai − ai−1−∆ai−1)2+βa(li + ∆li − li−1−∆li−1)2

+ βl(li + ∆li − li,j−1)2
}
,

where I(i, j) is the ith sample on the j th RF-line, α, βa and βl are
regularization weights, and superscript s refers to subpixel displace-
ment estimation. To simplify the notation, we have dropped the index
j in terms ai and li in Eq. (4). Therefore, terms ai, li, ∆ai and ∆li
stand for ai,j , li,j , ∆ai,j and ∆li,j . Symbol li,j−1 is the lateral dis-
placement of the previous RF-line. Note that li,j−1 denotes the total
lateral displacement of the previous line, i.e., when the displacement
of the (j − 1)th line was being calculated and li,j−1 was updated
with li,j−1 + ∆li,j−1.

Eq.(4) is nonlinear because the variables ∆a and ∆l appear in-
side the function I2. A typical RF dataset involves aroundm = 2000
samples per line leading to 4000 unknowns in Eq.(4). Consequently,
optimizing the cost function in Eq. (4) is computationally intensive
and cannot be performed in real-time. Previously in [18], we have
proposed to approximate the summation term in Eq.(4) involving I2
with the following first order Taylor series expansion

I2(i+ ai + ∆ai, j + li + ∆li) ≈ (5)
I2(i+ ai, j + li) + ∆aiI

′
2,a + ∆liI

′
2,l,

where I ′2,a and I ′2,l are, respectively, the axial and lateral deriva-
tives of I2. Substituting the above expression in Eq. (4) results in a
quadratic equation. In the matrix-vector format, the coefficient ma-
trix is sparse. Eq (4) can be optimized in about a millisecond on a
typical desktop computer.

2.3. Proposed Approach: Higer-order Analytic Minimization

In the proposed higher-order analytic minimization (HAM) ap-
proach, we modify the AM method to calculate subsample axial and
lateral displacement fields with higher accuracy. To achieve this, the
cost function in Eq. (4) is optimized on the basis of the second order
Taylor expansion of I2(i + ai + ∆ai, j + li + ∆li) instead of the
first order Taylor approximation used previously in AM [14]. The
outline of our algorithm is included below.

1. Perform DP (Eq. (3)) to calculate the integer values of the
displacements for the one seed RF-line. Then calculate linear
interpolation of the integer valued displacements to find better
initial subsample displacement for the seed RF-line.

2. For the seed RF-line, minimize the regularized cost function
HAM as elaborated in Section 2.3 to obtain the subpixel dis-
placement of the seed line.

3. Repeat the previous step for RF lines to the right and left of
the seed RF-line using the HAM method considering the dis-
placement of the previous line as the initial displacement es-
timate for the current line.

Assume that ai and li are the initial displacement estimates in the
axial and lateral directions for i = 1 · · ·m samples of an RF-line.
For the seed-line, ai and li are the linear interpolation of the integer
DP displacements. For the rest of the lines, ai and li are the displace-
ments of the previous line. The purpose of the HAM, similar to AM,
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(a) t = 0.08 ms (b) t = 0.48 ms

(c) t = 0.8 ms (d) t = 1.12 ms (e) t = 1.44 ms

Fig. 1. Axial displacement fields of CIRS phantom experiment using the HAM method for five frames after an excitation. Axes are in mm.

is to find ∆ai and ∆li values such that (ai + ∆ai, li + ∆li) gives
the axial and lateral displacements at the sample i. The second order
Taylor expansion contains ∆a2i and ∆l2i . Therefore, on one hand,
substituting these terms into into Eq. (4) results in a polynomial cost
function of order 4. On the other hand, for an RF data of length 2000,
Eq. (4) has 4000 variables. Optimization of such a high dimensional
nonlinear cost function is computationally expensive. For a practi-
cally feasible implementation, we adopt the following approach

Cj(∆a1, · · · ,∆am,∆l1, · · · ,∆lm) = (6)
m∑
i=1

{
wi,j [I1(i, j)− I2(i+ ai + ∆ai, j + li + ∆li)]

2

+α(ai+∆ai−ai−1−∆ai−1)2+βa(li+∆li−li−1−∆li−1)2

+ βl(li + ∆li − li,j−1)2
}
,

where wi,j =
1

ε+ |I ′′2,a(i, j)|+ |I ′′2,l(i, j)|
(7)

where ε a small positive constant to prevent the denominator from
becoming zero. Symbols |I ′′2,a(i, j)| and |I ′′2,l(i, j)| denote the ab-
solute values of second-order derivatives in the axial and lateral di-
rections respectively. Intuitively, incorporating wi,j in the principal
cost function Eq. (6) penalizes samples that have a high second-order
derivative. This is because we only use first order Taylor expansion
to simplify the nonlinear cost function, and this approximation is
only good when the second-order derivative is small.

If the displacement estimate of the previous line is not accurate,
it will affect the displacement of the next line through the last term
in the right hand side of Eq. (6). We avoid propagating this error to
the neighbouring RF lines by setting βl as follows

βl =
βl

1 + |ri,j−1|
(8)

where ri,j−1 is the residual associated with the displacement of the
ith sample of the previous line. Note βl will be small when there is a
large residual and its influence on the next line will be small.

The optimal (∆ai,∆li) values will make the partial deriva-
tives of Cj with respect to ∆ai and ∆li equal to zero. Setting
∂Cj/∂∆ai = 0 and ∂Cj/∂∆li = 0, for i = 1 · · ·m, and stacking
the 2m unknowns in ∆d = [∆a1,∆l1,∆a2,∆l2, · · · ,∆am,∆lm]T

and 2m initial estimates in d = [a1, l1, a2, l2, · · · , am, lm]T gives

(I ′22 +D1 +D2)∆d = I ′2e−D1d (9)

where I ′22 = diag(J ′2(1) · · · J ′2(m)) is a symmetric tridiagonal
matrix of size 2m × 2m with

J ′2(i) =

[
I ′22,a I ′2,aI

′
2,l

I ′2,aI
′
2,l I ′22,l

]
(10)

blocks on its diagonal entries where I ′2,a and I ′2,l are the derivatives
of I2 at point (i+ ai, j + li) in the axial and lateral directions and

D1 =



α 0 −α 0 0 0 · · · 0
0 βα 0 −βα 0 0 · · · 0
−α 0 2α 0 −α 0 · · · 0
0 −βα 0 2βα 0 −βα · · · 0
0 0 −α 0 2α 0 · · · 0

··
·

· · ·
0 0 0 · · · −α 0 α 0
0 0 0 · · · 0 −βα 0 βα


(11)

and D2 = diag(0, β′l, 0, β
′
l, · · · , 0, β′l) is a diagonal matrix with di-

mensions 2m × 2m.

I ′2 = wi,j× (12)
diag(I ′2,a(1), I ′2,l(1), I ′2,a(2), I ′2,l(2), · · · I ′2,a(m), I ′2,l(m))
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(a) NCC (b) AM (c) HAM

Fig. 2. Axial Displacement fields of CIRS Phantom experiment using the HAM, AM and NCC methods. The frames are estimated for t =
0.08 ms after the excitation occurs. Axes are in mm.

Table 1. SNR values for the shear-wave velocity across the phantom
using three HAM, AM and NCC methods. The SNR improvement
in in comparison with the NCC method is provided.

NCC AM HAM

SNR 3.08 3.37 3.74
%age of SNR improvement - 9 21

where I ′2,a(i) and I ′2,l(i) are calculated at point (i+ ai, j + li), and
e = [e1e1e2e2 · · · em]T , ei = wi,j(I1(i, j)−I2(i+ai, j+li)). Hav-
ing ∆d = [∆a1,∆l1,∆a2,∆l2, · · · ,∆am,∆lm]T and 2m initial
estimates in d = [a1, l1, a2, l2, · · · , am, lm], we will find 2m axial
and lateral displacements for i = 1 · · ·m for j th line. Afterward, we
follow the same procedure for the neighbouring line and consider the
calculated displacement on j th line as initial value. Repeating this al-
gorithm gives us both axial and lateral displacement values for the
entire image.

3. EXPERIMENTAL RESULTS

Real experimental phantom data was used to assess the precision
and accuracy of the proposed HAM method. The results were com-
pared with the AM and normalized cross correlation (NCC) based
approaches. The RF data is acquired from an CIRS 049A experimen-
tal phantom using a transducer of type L3-8 operating at the central
frequency of 5.3 MHz, comprising of 128 elements, and with a pitch
of 0.03 mm. The Central element of the push beam aperture is 31th

element out of 64 active elements at a focal depth of 20 mm. For data
acquisition, the spatial resolution in the lateral and axial directions
are 0.03 and 0.077 mm, respectively.

Since the wave inside the tissue is of transversal nature that
propagates perpendicular to the displacement [19], only axial dis-
placement fields are assessed in this section. Figure 1 shows five
axial displacement frames of the same tissue but at different times of
propagation. As show in the figure, the wave starts propagating from
the ROE to all sides. The axial displacement fields computed using
HAM, AM and NCC methods for the experimental phantom data are
shown in Figure 2. Since the HAM method incorporated more infor-
mation as compared to AM, a better performance is observed. Both
methods are fast enough and suitable for real-time implementation
and have approximately the same computational complexity. To find
displacement field for an image of size 455 × 128 using HAM and
AM, arround one second is required; whereas, that is around 30 s
by applying 90 % overlapping using NCC. The tuneable parameters
of the HAM method are set to α = 800, βa = 1 and βl = 1 to

Fig. 3. SW (Shear wave) speed variance in the tissue-mimicking
phantom calculated using 20 consecutive displacement frames.

achieve the best results while the same parameters are set to 20, 1
and 1, respectively, in AM.

Phantom Young’s moduli (7 KPa) is used to estimate the shear
wave speed and is used as the ground truth. The experimental phan-
tom is homogeneous, and as such, it has a uniform shear-wave speed.
Therefore, in order to validate the results, we calculate shear-wave
velocity to compare NCC, AM and HAM. As expected, the shear-
wave propagates inside a uniform tissue with a constant speed [20].
Figure 3 shows the standard deviation calculated for speed of shear-
wave using the time-to-peak (TOF) algorithm [21] across the lateral
position. The HAM method yields a substantially smaller variance
in the shear wave-speed as compared to NCC and AM, illustrating
superior performance. Similar results were observed for a variety of
different setups.

4. CONCLUSION

The paper proposes a regularized cost function to track small dis-
placements in shear-wave elastography. We show that direct incor-
poration of the second-order derivatives into the cost function makes
the optimization computationally intractable. To address this issue,
we developed an approach based on higher-order analytical mini-
mization that improves the accuracy of the estimate for tissue dis-
placement fields as verified in real-time experiments based on tissue-
mimicking phantom. The proposed method is computationally ef-
ficient and is suitable for real-time implementation on commercial
ultrasound machines.
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