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ABSTRACT

Compressive deconvolution, combining compressive sam-
pling and image deconvolution, represents an interesting
possibility to reconstruct enhanced ultrasound images from
compressed measurements. The model of compressive de-
convolution includes, in addition to the measurement ma-
trix, a 2D convolution operator carrying the information on
the system point spread function which is usually unkown
in practice. In this paper, we propose a novel alternating
minimization-based optimization scheme to invert the result-
ing linear model, to jointly reconstruct enhanced ultrasound
images and estimate the point spread function. The per-
formance of the method is evaluated on both Shepp-Logan
phantom and simulated ultrasound data.

Index Terms— Ultrasound imaging, Compressive sam-
pling, Blind deconvolution, Alternating minimization

1. INTRODUCTION

With the possibility of increasing the frame rate and/or re-
ducing the acquired data volume, the topic of compressive
sampling (CS) in the field of ultrasound (US) imaging has
attracted a growing interest from several research groups [1–
6]. According to the CS theory, the reconstruction of US
images from compressed measurements is possible provided
two conditions are met: i) the image must have a sparse
representation in a known basis or frame and ii) the mea-
surement and sparsifying basis must be incoherent [7]. It
has been thus shown that the radiofrequency (RF) data may
be recovered based on its sparse representation in basis such
as wavelets [5], waveatoms [8], 2D Fourier transform [2] or
learned dictionaries [6], considering Bernoulli Gaussian [9]
or α-stable statistical assumptions [10] and using various ac-
quisition schemes such as plane-waves [5], Xampling [3] or
projections on Gaussian [1] or Bernoulli random vectors [2].

Despite the promising results, the application of CS in US
imaging still remains challenging. First, because of the spe-
cific ultrasound noise (speckle) and given that the two con-
ditions mentioned above cannot be always strictly satisfied in
practical situations. The images reconstructed through CS are
usually less good in terms of signal to noise ratio compared

to standard acquisitions, especially when the ratio between
the number of linear measurements and the number of image
samples in the image to be reconstructed (denoted as CS ra-
tion below) is low. Second, the quality of the reconstructed
images is at most equivalent to those acquired using stan-
dard schemes whereas it is well-known that the spatial res-
olution, the signal-to-noise ratio and the contrast of standard
US images are affected by the limited bandwidth of the imag-
ing transducer, the physical phenomena related to US wave
propagation such as diffraction and the imaging system.

In order to overcome these issues, we have recently pro-
posed a compressive deconvolution (CD) framework aiming
at reconstructing enhanced RF images from compressed lin-
ear measurements [11]. The main idea behind CD is to com-
bine CS and deconvolution reconstructions leading to the fol-
lowing linear model:

y = ΦHx + n (1)

where y ∈ RM containsM linear measurements obtained
by projecting one RF image Hx ∈ RN onto the CS acquisi-
tion matrix Φ ∈ RM×N , with M << N . H ∈ RN×N is
a block circulant with circulant block (BCCB) matrix mod-
elling the 2D convolution between the US system 2D point
spread function (PSF) of the US system and the tissue re-
flectivity function (TRF) x ∈ RN (the desired image). Fi-
nally, n ∈ RM stands for a zero-mean additive white Gaus-
sian noise. All the images in (1) are expressed in the standard
lexicographical order.

We should note that similar models have been proposed
for general image processing purpose [12–15] including a the-
oretical derivation of Restricted Isometry Property (RIP) for
random mask imaging [16]. Nevertheless, in contrast to the
solutions provided by these existing works, we formulated in
[11] the reconstruction process into a constrained optimiza-
tion problem exploiting the relationship between CS recovery
and deconvolution. This algorithm in [11] based on alternat-
ing direction method of multipliers (ADMM) was further im-
proved with faster convergence based on simultaneous direc-
tion method of multipliers (SDMM) in [17]. Both algorithms
have achieved promising results with the assumption that the
PSF was known or could be estimated in a pre-processing
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step.
In this paper, we propose a compressive blind deconvo-

lution (CBD) algorithm that processes simultaneously image
reconstruction and PSF estimation. The remainder of the pa-
per is organized as follows. In section 2 we formulate the
compressive blind deconvolution problem. Section 3 details
the proposed CBD algorithm. Simulation results are provided
in section 4 before drawing the conclusions in section 5.

2. PROBLEM FORMULATION

Inspired by the existing joint identification methods for blind
deconvolution problem [18–20] and the prior information on
the PSF adopted in [21–23], we formulate the compressive
blind deconvolution problem as below.

min
x∈RN ,a∈RN ,h∈Rs

‖ a ‖1 +αP (x) + γ ‖ h ‖22

+
1

2µ
‖ y − ΦΨa ‖22 s.t. Hx = Ψa

(2)

where α, γ, µ are hyper-parameters weighting the differ-
ent regularization terms and h ∈ Rs represents the PSF with
a support of size s. The objective function in (2) contains, in
addition to the data fidelity term, three regularization terms.
The first term aims at imposing the sparsity of the RF data
Hx in a transformed domain Ψ. The second term P (x) rep-
resents the a priori information of the target image (TRF) x.
We employed an `p-norm (adapted to US images) where the
parameter p (1 ≤ p ≤ 2) is related to the generalized Gaus-
sian distribution (GGD) modelling US images [24, 25]. This
allows us to generalize the existing works in US image de-
convolution mainly based on Laplacian or Gaussian statistics
[18, 26]. A CD approach using a generalized total variation
(TV) regularization has also been detailed in [11] and will
also be used herein for comparison purpose with the exist-
ing CBD method in [15]. The third term (`2-norm) serves to
regularize the PSF [21–23].

Unlike the CD problem in [11], this objective function is
no longer convex. We hereafter present a dedicated algorithm
to solve this optimization problem.

3. PROPOSED ALGORITHM

The aforementioned objective function in (2) can be divided
into two sub-problems by an the alternating minimization
(AM)-based algorithm, see, e.g., [27]. The first sub-problem,
aiming at estimating a and x for a fixed h at kth iteration,
can be written as:

(xk+1,ak+1) = argmin
x∈RN ,a∈RN

‖ a ‖1 +αP (x)

+
1

2µ
‖ y − ΦΨa ‖22 s.t. Hkx = Ψa

(3)

This sub-problem corresponds to the non-blind CD prob-
lem that we have previously solved in [11, 17]. Both the
ADMM-based and SDMM-based algorithms in [11, 17] are
able to estimate xk+1 and ak+1 at the same time.

The second sub-problem concerns the estimation of h for
fixed a and x:

hk+1 = argmin
h∈Rs

γ ‖ h ‖22 s.t. Xk+1Ph = Ψak+1

(4)
where Xk+1 ∈ RN×N is a Block Circulant with Circulant
Block (BCCB) matrix with the same structure as H . Its cir-
culant kernel is xk+1 ∈ RN . P ∈ RN×s is a simple structure
matrix mapping the s coefficients of the PSF kernel h to a
N length vector so that Hxk+1 = Xk+1Ph, see, e.g., [28].
The constrained problem above can be solved by reformulat-
ing it as an unconstrained one, thus becoming a regularized
least square problem. Its analytical solution has been given in
[21]:

hk+1 = [(Xk+1P )tXk+1P +γIs]
−1(Xk+1P )tΨak+1 (5)

where Is ∈ Rs is an identity matrix. We notice that instead of
inverting an N ×N matrix, we hereby only need to deal with
the inversion of an s × s matrix. The computational cost is
thus reduced. More details about the practical implementation
of the analytic solution in (5) can be found in [28].

The proposed AM-based algorithm for CBD is summa-
rized in Algorithm 1.

Algorithm 1 AM-based compressive blind deconvolution al-
gorithm.
Input: h0, α, µ, β, γ

1: while not converged do
2: xk+1,ak+1 ← hk . update xk+1, ak+1 using

ADMM-based [11] or SDMM-based [17] algorithms
3: hk+1 ← xk+1,ak+1 . update hk+1 using (5)
4: end while

Output: x,a,h

4. SIMULATION RESULTS

In this section, we provide a preliminary evaluation of the pro-
posed CBD method’s performance through two numerical ex-
periments. The first simulation is based on the Shepp-Logan
phantom and serves to compare our approach to the method in
[15], referred as CBD_Amizic hereafter. Second, we test our
algorithm on a simulated US image, showing the effective-
ness of our approach compared to the compressive non-blind
deconvolution method in [17].
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(a)                                                             (b)      

     (c)                                                             (d)                                    

Fig. 1: Results on Shepp-logan phantom. (a) Original,
(c) blurred, (b,d) reconstruction results respectively with
CBD_Amizic and the proposed method for CS ratios of 0.4.

4.1. Results on Shepp-logan phantom

The comparison results in this subsection are obtained on the
standard 256 × 256 Shepp-Logan phantom. For fair com-
parison, the measurements have been generated in a similar
manner as in [15], i.e. the original image was normalized,
degraded by a 17 × 17 Gaussian PSF with variance of 9 and
projected onto a structured random matrix (SRM) to gener-
ate the CS measurements. Finally, the compressed measure-
ments were corrupted by an additive Gaussian noise corre-
sponding to a SNR of 40 dB. We should remark that in [15]
the compressed measurements were originally generated us-
ing a Gaussian random matrix. However, we have found that
the reconstruction results with CBD_Amizic are slightly bet-
ter when using a SRM compared to the PSNR (Peak Signal-
to-Noise Ratio) results reported in [15]. Both methods used
the generalized TV to regularize the reconstructed image and
the 3-level Haar wavelet transform as sparsifying basis Ψ.
With our method, the ADMM-based approach in [11] was
employed to update x and a. All the hyperparameters were
manually set to their best possible values by cross-validation
and both algorithms used the same stopping criteria.

Table 1: Quantitative assessment for Shepp-Logan phantom
Methods CS ratios PSNRx PSNRh Time/s

CBD_Amizic

80% 22.55 86.86 353.64
60% 22.48 86.49 415.96
40% 22.38 86.18 535.59
20% 19.80 82.41 534.34

Proposed

80% 24.39 92.41 243.31
60% 23.12 89.70 320.82
40% 22.59 88.36 321.39
20% 21.48 85.96 329.90

Fig. 1 shows the original Shepp-Logan image, its blurred

     (c)                                                                    (d)                   

  (a)                                                                    (b)              

Fig. 2: Estimated PSFs for compressive blind deconvolu-
tion presented in Fig. 1. (a) Original, (c) initial, (b,d) esti-
mated PSFs respectively with CBD_Amizic and the proposed
method for CS ratios of 0.4.

version and a series of compressive deconvolution reconstruc-
tions using both our method and CBD_Amizic, for a CS ratio
of 0.4. Additionally, in Fig. 2, we provided the estimated
PSFs together with the true Gaussian PSF of variance 9 used
to degrade the original images and the initial Gaussian PSF
of variance 2 as used in [15]. Table 1 regroups the PSNR
of the estimated x and h obtained with our method and with
CBD_Amizic for four CS ratios ranging from 0.2 to 0.8. In
each case, the reported PSNRs are the mean values of 10
experiments. We may observe that our method outperforms
CBD_Amizic in all the cases. Moreover, our approach is less
time consuming than CBD_Amizic for all the CS ratios con-
sidered1. Both algorithms were implemented using Matlab
on a standard desktop computer (Intel Xeon CPU E5620 @
2.40GHz, 4.00G RAM).

4.2. Results on simulated US images

In this section, we tested the proposed method on one simu-
lated US image. Given that the CBD_Amizic method using
a generalized TV prior is not well-suited to model the TRF
in US imaging (see [11]), we did not use it in the following
simulation.

This initial investigation uses an US image generated by
2D convolution between a spatially invariant Gaussian PSF of
variance 2 and a TRF, shown in Fig. 3(a)(e). The TRF corre-
sponds to a simple medium representing a round hypoechoic
inclusion into a homogeneous medium. The scatterer ampli-
tudes were random variables distributed according to a GGD
with the shape parameter equal to 1.5. The compressed mea-
surements were obtained by projecting the RF images onto a

1For CBD_Amizic method, we used the original code provided by the
authors of [15].
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      (a)                                          (b)                                           (c)                                           (d)

    (e)                                           (f)                                            (g)                                         (h)

Fig. 3: Simulated US image and its reconstruction results for a SNR of 40 dB. (a) TRF, (e) Simulated B-mode US image, (b,c,d)
results using CD algorithm with a pre-estimated PSF for CS ratios of 0.8, 0.6 and 0.4, (f,g,h) results using proposed method for
CS ratios of 0.8, 0.6 and 0.4.

Fig. 4: Estimated PSFs for compressive blind deconvolution
presented in Fig. 3. (a) True PSF, (b) initial PSF (estimated
using an exiting method [29]), (c,d,e) estimated PSF with pro-
posed method for CS ratios of 0.8, 0.6 and 0.4.

SRM, aiming at reducing the amount of data available.

The proposed method was compared to the non-blind CD
algorithm in [17]. With the non-blind approach, the PSF was
pre-estimated from the blurred data following the PSF esti-
mation procedure presented in [29]. The proposed method
takes this PSF as an initial guess and updates it iteratively.
The true and estimated PSFs are shown in Fig. 4, while the
reconstructed images are regrouped in Fig. 3. In order to give
an upper bound to the results, we provided also the results of
CD algorithm with the true PSF, denoted by CD_true in Table
2. The visual inspection and the quantitative results in Table 2
confirm that the proposed method is able to recover both TRF
and PSF with better accuracy that the non-blind approach.

Table 2: Quantitative assessment for simulated US data
Methods CS ratios PSNRx PSNRh

CD_true

80% 26.86

-60% 25.38
40% 24.75
20% 22.74

CD

80% 20.47

23.2060% 20.07
40% 19.61
20% 18.82

Proposed

80% 23.51 26.73
60% 23.20 26.35
40% 22.30 25.30
20% 20.80 23.34

5. CONCLUSION

This paper presents an initial investigation of a compressive
blind deconvolution algorithm. The proposed AM-based ap-
proach iteratively alternates between on the one hand, the esti-
mation of the TRF and the sparse representation of the blurred
US RF image, and on the other hand the PSF update solved
analytically. Simulation results on the standard Shepp-Logan
phantom show the superiority of our method, both in accu-
racy and in computational time, over an existing compressive
blind deconvolution approach [15]. Finally, preliminary re-
sults on a simulated US image have also shown the efficiency
of the proposed approach on both TRF and PSF estimation
over a non-blind approach. Our future work will mainly fo-
cus on a further evaluation of the proposed algorithm, both on
simulated and experimental data. The interest of other PSF
regularization functions will be also investigated.
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