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ABSTRACT
Boundaries and lines in medical images are important struc-
tures as they can delineate between tissue types, organs, and
membranes. Although, a number of image enhancement and
segmentation methods have been proposed to detect lines,
none of these have considered line artefacts, which are more
difficult to visualise as they are not physical structures, yet
are still meaningful for clinical interpretation. This paper
presents a novel method to restore lines, including line arte-
facts, in speckle images. We address this as a sparse estima-
tion problem using a convex optimisation technique based on
a Radon transform and sparsity regularisation (`1 norm). This
problem divides into subproblems which are solved using the
alternating direction method of multipliers, thereby achieving
line detection and deconvolution simultaneously. The results
for both simulated and in vivo ultrasound images show that
the proposed method outperforms existing methods, in par-
ticular for detecting B-lines in lung ultrasound images, where
the performance can be improved by up to 30 %.

Index Terms— ultrasound, inverse problem, ADMM,
line detection, sparsity regularisation

1. INTRODUCTION

Medical ultrasound (US) image quality is degraded heavily
by speckle noise, which has a granular appearance related to
limitations in spatial-frequency bandwidth of the interference
signals. Detecting structures and lines in these speckle images
is challenging due to the multiplicative noise causing multi-
ple false peaks generated from collinear noisy edge points.
Edge detection using local filtering or line detection using
a Hough transform is consequently almost impossible with-
out pre-processing to enhance the image and reduce speckle
noise.

Several techniques have been proposed to deal specifi-
cally with speckle noise [1], while other techniques have fo-
cused on line detection in noisy images. Lee and Kweon
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employed Deriche’s edge operator, which was claimed to be
more robust to noise effects than other operators such as So-
bel and Difference of Gaussian filters [2]. Eight directional
sticks were employed in a technique by Czerwinski et al. [3]
that used a rotating kernel transformation to enhance lines and
curves in US images. A soft-threshold wavelet method was
employed in [4] to remove noise while applying the Sobel
edge detection before a Hough transform. These techniques
generally require several pre-defined thresholds and param-
eters and are hence unreliable for use with data collected in
different settings.

An important clinical application of line detection in
speckle is B-line detection from lung ultrasound images.
Physiologically, the difference in acoustic impedance be-
tween the lung and the surrounding tissues is increased when
lung density increases due to transudate. This creates dis-
crete hyper-echogenic reverberation artefacts arising from the
pleural line, known as B-lines. The number of B-lines has
positive linear correlation with extravascular lung water, so
multiple B-lines are considered a sign of fluid overload [5].
A key challenge in the detection of B-lines is operator depen-
dency, where identification and quantification of B-lines can
be variable between different operators. Therefore, image
processing techniques that improve the visibility of lines and
facilitate line detection in speckle images are essential.

In this paper, we propose a novel solution to an inverse
problem for line detection in speckle ultrasound (US) images,
which also works well with line artefacts. We employ a Radon
transform, where a grayscale image is converted to a represen-
tation of radius and orientation as shown in Fig. 1. This in-
verse problem is solved using the alternating direction method
of multipliers (ADMM) [6], offering a fast convergence rate.
We employ `1 regularisation since the nature of `1 norm is
a convex relaxation of `0, which leads to sparsity. This obvi-
ously fits well with our work since the space of lines is sparse.
We show results of line restoration in both simulated US im-
ages and in vivo B-mode US images. The automated B-line
detection method [7] was applied to the results in order to
investigate the performance in real applications.

The remainder of this paper is organised as follows. The
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proposed line detection method is described in Section 2. The
performance of the method is evaluated in Section 3. Finally,
Section 4 presents the conclusions of this work.

2. PROPOSED LINE DETECTION IN SPECKLE
IMAGES

Lines in speckle images can be described using the model

y = HCx+ n, (1)

where y is the observed speckle image, x is the line repre-
sented by the orientation θ and distance r from the centre of
y. H is a point spread function (PSF) generated in the imag-
ing systems as ultrasounds in this case. R and C are a Radon
transform and an inverse Radon transform, respectively. To
operate with an image, R and C are discrete and can be im-
plemented as proposed in [8]. n is Gaussian noise.

2.1. Optimisation problem

Eq. 1 can be seen as two separate subproblems which can be
solved with two optimisation processes. The first process is
to estimate the tissue reflectivity function (TRF) w from the
blurred speckle image y = Hw, using Eq. 2.

ŵ = arg min
w
{||y −Hw||22 + α||w||1}. (2)

The second process is to estimate the lines in the Radon
transform domain x from the TRF w = Cx, using Eq. 3.

x̂ = arg min
x
{||ŵ − Cx||22 + β||x||1}. (3)

Solving two optimisation problems separately is compu-
tationally inefficient; therefore, we estimate x and w simulta-
neously by solving the following optimisation problem:

x̂ = arg min
x
{||y −HCx||22 + α||Cx||1 + β||x||1}. (4)

2.2. Implementation

The ADMM [6] is employed to solve the problem in Eq. 4.
It is a variant of the augmented Lagrangian scheme that uses
partial updates for the dual variables. It is simple to imple-
ment by splitting a large problem into a series of subproblems
as follows.

minimize f(u) + g(v),

subject to Au− Bv = 0.
(5)

where f(u) = ||y −Hu||22, u = w = Cx, (6a)

g(v) = α||w||1 + β||x||1, v = [w x]T , (6b)

A =

[
I
I

]
, B =

[
I 0
0 C

]
. (6c)

Fig. 1. Example of lung US image y (left) and its Radon transform
Ry (right), where the horizontal axis is θ varying from -45◦ to 135◦,
the vertical axis is r varying from −rmax to rmax, and the brighter
intensity indicates higher magnitude of the Radon transform.

uT indicates the transpose of u, and I is an identity matrix
with the same size as y, which is N × N . Then, the Aug-
mented Lagrangian for Eq. 5 is

Lρ(u, v, z) = ||y −Hu||22 + α||w||1 + β||x||1

+zT (Au− Bv) +
ρ

2
||Au− Bv||22,

(7)

where z = [z1 z2]T is the dual variable or Lagrange multi-
plier, z1 ∈ RN×N , z2 ∈ RN×N . ρ > 0 is a penalty pa-
rameter. The ADMM technique allows this problem to be
solved approximately using three-step iterations, namely i) u-
minimisation, ii) v-minimisation, and iii) dual update, as

uk+1 := arg min
u
Lρ(u, vk, zk), (8a)

vk+1 := arg min
v
Lρ(uk+1, v, zk), (8b)

zk+1 := zk + ρ(Auk+1 − Bvk+1). (8c)

where k is an internal iteration counter. As v = [w x]T , the
problem in Eq. 8b can be divided into two subproblems to
restore wk+1 and xk+1 independently. The algorithm stops
with the convergence criterion ||xk+1−xk||/||xk|| < ε, where
ε is a very small number (we use ε = 10−3 in this paper).

2.2.1. Solving uk+1

The problem in Eq. 8a is a quadratic function about u, which
can be solved as follows.

uk+1 = arg min
u
||y −Hu||22 + (zk)T (Au− Bvk)

+
ρ

2
||Au− Bvk||22,

= (2HTH+ 2ρI)−1(2HT y + ρwk + ρCxk

− zk1 − zk2 ).

(9)

2.2.2. Solving wk+1 in vk+1

We define λ1 = α/ρ. The subproblem of Eq. 8b for wk+1 is
a form of proximal operator of λ1||w||1 [9] and wk+1 can be
computed as follows.
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wk+1 = arg min
w

λ1||w||1 +
1

2
||uk+1 − w +

zk1
ρ
||22,

= Sλ1

(
uk+1 +

zk1
ρ

)
,

(10)

where Sλ(•) is a soft thresholding described by

Sλ(a) = sign(a) max(|a| − λ, 0). (11)

2.2.3. Solving xk+1 in vk+1

We define λ2 = β/ρ. The subproblem of Eq. 8b for xk+1 is

xk+1 = arg min
x

λ2||x||1 +
1

2
||uk+1 − Cx+

zk2
ρ
||22. (12)

We solve this problem using two-step iterative shrink-
age/thresholding (TwIST) [10]. This method offers fast con-
vergence rate for ill-conditioned problems. Starting with
x̆0 = xk, the iterative process proceeds as follows.

d = x̆t +R
(
uk+1 − Cx̆t +

zk2
ρ

)
, (13a)

x̆t+1 = (1− %)x̆t−1 − %x̆t + 2%Sλ2(d), (13b)

Sλ2
(d) =

max(|d| − λ2, 0)

(max(|d| − λ2, 0) + λ2)
d, (13c)

where % is a two-step parameter, defined as in [10]. t is an
internal iteration counter, and λ2 > 0. The iteration process
stops when ||x̆t+1 − x̆t||/||x̆t|| < ε, xk+1 = x̆tfinal .

2.2.4. Computing zk+1

The last step in each iteration is for updating z, which is

zk+1
1 = zk1 + ρ(uk+1 − wk+1), (14a)

zk+1
2 = zk2 + ρ(uk+1 − Cxk+1) (14b)

3. RESULTS AND DISCUSSION

We tested our proposed method with simulated speckle im-
ages and in vivo B-mode images. Then, the accuracy of the
line restoration was examined with an automatic B-line detec-
tion method. We set α, β and ρ equal to 1.

3.1. Simulated speckle images

We created a simulated image (300×300 pixels) with sev-
eral lines rotated at different angles as shown in Fig 2 (a)
(The line image is on the top row and its Radon transform
is on the bottom row). Subsequently, random multiplicative
noise was added and the convolution with the simulated US
PSF was applied, as used in [11]. The B-mode simulated
image is shown in Fig. 2 (b). We compared our proposed
method with three existing techniques: i) enhanced lines and
boundaries of speckle images using sticks (STICKS) [3], ii)
despeckling approach with adaptive-weighted bilateral filter-
ing (AWBF) [12], and iii) line detection with log regularised

Hough transform (HOUGH) [13]. Fig. 2 (c)-(f) show the re-
stored line images (top row) and the Radon transforms (bot-
tom row) of the STICKS, AWBF, HOUGH and the proposed
method, respectively.

To detect lines, a local-maximum operator was applied
to find local peaks x(rpeak, θpeak) in the Radon transform
(marked with the plus signs, +, in the figure). These points
were back-projected to the image domain y using the inverse
Radon transform. Unfortunately, the back-projection does
not contain information of the line length. Hence, we es-
timated the length using intensity values of y(i, j), {i, j} ∈
Cx(rpeak, θpeak) after applying a low-pass filter. The longest
continuous line was drawn at the locations, where y(i, j) > ȳ
and ȳ is the mean intensity value of the line. The results in
Fig. 2 reveals that our proposed method and HOUGH can
achieve good line detection as all lines can be identified cor-
rectly. Three lines were excluded in the raw speckle image,
and one line was missed out by both AWBF and STICKS.

3.2. In vivo images – Lung ultrasounds

We examined the performance of our line detection approach
for a real application in clinical practice – B-line detection.
We estimate the PSF using the method proposed in [14]. We
employed the B-line detection algorithm proposed in [7] (Sec-
tion 3.2) to automatically count the number of B-lines in lung
ultrasound images. Briefly, this algorithm detects the line
artefacts in a Radon transform domain using a local maxima
detection method. The pleural, A-, B- and Z-lines are detected
within a range of orientations, where these artefacts could oc-
cur. The Z-lines can be seen as similar to the B-lines in the
Radon transform, but they are erased by the A-lines. Then,
the type of the line artefacts are classified following their clin-
ical definitions. Fig. 3 shows the cropped areas underneath
the pleural lines, where A-, B- and Z-lines appear, with the
marks of the detected lines. The B-lines are counted as one if
they originate from the same point on the pleural line – (seen
as the merging point on the top of the cropped images). We
compared our proposed method with HOUGH [13], which
gave the best performance amongst the existing methods em-
ployed in the previous section.

In Fig. 3, the A-, B-, and Z-lines are drawn with red, yel-
low and green, respectively. The image on the left, (a1)-(c1),
contains five horizontal A-lines, one vertical B-line and one
Z-line going across the A-lines. This ground truth was con-
firmed by clinical experts. The proposed method can detect
all lines correctly, whilst HOUGH misses two A-lines since
the amplitude of the small peaks are suppressed. The im-
age on the right, (a2)-(c2), has one A-line, two B-line and
one Z-line. The proposed method has one incorrect A-line,
whilst HOUGH misses one B-line and the Z-line. The log
regulariser of the HOUGH method penalises large values less
than the `1-based penalty, but it diminishes small peaks as it
treats them as noises.

For objective evaluation, we tested the performance of our
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(a) (b) (c) (d) (e) (f)

Fig. 2. Line images (top row) and their Radon transform (bottom row), overlaid with lines automatically detected using local maxima. (a)
clear line images, (b) B-mode of the simulated speckle y of (a), and the results of (c) STICKS [3], (d) AWBF [12], (e) HOUGH [13] and (f)
proposed method x.

(a1) (b1) (c1) (a2) (b2) (c2)

Fig. 3. Lines detected in the lung ultrasounds (top-row) and their Radon transform (bottom-row). (a) original B-mode images, (b) lines
detected by HOUGH [13], (c) lines detected by proposed method. The image in (a1-b1-c1) contains one B-line (yellow), one Z-line (green)
and five A-lines (red). The image in (a2-b2-c2) contains two B-line (yellow), one Z-line (green) and one A-lines (red).

methods on the B-line detection with 50 lung ultrasound im-
ages. Table 1 shows the average results in terms of precision
and recall. The precision was computed from the total num-
ber of correctly detected B-lines divided by the number of
all detected B-lines. The recall was computed from the to-
tal number of correctly detected B-lines divided by the total
number of the true B-lines. The results show that our pro-
posed method outperforms the STICKS and HOUGH by ap-
proximately 30 % and 10 %, respectively.

4. CONCLUSION

This paper presents a novel line detection method using `1
regularisation. The proposed method restores the lines by
solving an inverse problem based on the Radon transform.
The method offers a simple and fast implementation via the

Table 1. B-line detection performance
method STICKS [3] HOUGH [13] proposed

Precision 0.72 0.92 0.93
Recall 0.54 0.62 0.74

ADMM by dividing a large problem into a series of subprob-
lems. The proposed method thus achieves line restoration and
deconvolution simultaneously. The subjective results show
accurately restored lines and the objective results show that
the proposed method outperforms existing ones for B-line de-
tection in lung ultrasound imags by up to 30 %.
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