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ABSTRACT

Light scattering on diffuse rough surfaces was long assumed
to destroy geometry and photometry information about hid-
den (non line of sight) objects making ’looking around the
corner’ (LATC) and ’non line of sight’ (NLOS) imaging im-
practical. Recent work pioneered by Kirmani et al. [1], Vel-
ten et al. [2] demonstrated that transient information (time of
flight information) from these scattered third bounce photons
can be exploited to solve LATC and NLOS imaging. In this
paper, we quantify the geometric and photometric reconstruc-
tion limits of LATC and NLOS imaging for the first time us-
ing a classical linear systems approach. The relationship be-
tween the albedo of the voxels in a hidden volume to the third
bounce measurements at the sensor is a linear system that is
determined by the geometry and the illumination source. We
study this linear system and employ empirical techniques to
find the limits of the information contained in the third bounce
photons as a function of various system parameters.

1. INTRODUCTION

We can identify and localize sounds originating around a cor-
ner but cannot do the same with light. This is due to the fact
that the wavelength of sound is large relative to the occluding
geometry and thus reflections are effectively fully specular for
typical hard surfaces such as walls[3, 4]. Light on the other
hand, with its much smaller wavelengths, undergoes random
phase modulation from macroscopic occluders. Nonetheless,
multi-bounce photons do travel from a hidden object to an
around-the-corner observer. It has recently be demonstrated
that temporal information can be exploited to resolve spatial
information [1, 5, 6, 7, 8] hidden from direct view, enabling
us to build imaging systems capable of ‘looking around the
corner’ (LATC) and ‘non line of sight’ (NLOS) imaging.

While there is a good understanding on how to computa-
tionally focus the rays around corners [1, 2, 7, 9], very little
is known about the effect of various parameters on the recon-
struction. In this paper, we show that linear system analy-
sis can be performed to quantitatively answer these questions
and establish bounds on the reconstruction performance of a
given system (number of transient imagers, temporal resolu-
tion, Signal to noise ratio (SNR), number of measurements).
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Fig. 1. Problem Setup: A hidden object resides in a known
cubic volume with side length 500 mm. A thick (fully oc-
cluding) wall separates the unknown object from the source
(S) and the detector (D), which are bounded within a similar
cubic volume of 500 mm on a side. A scatterer (W ) allows
photons to pass between the source-detector setup and the
hidden object. All virtual sources (S′) and virtual detectors
(D′) must lie on the surface of this scattering wall. We will
computationally find the performance bounds for this setup.

1.1. Problem Setup

We consider an example scenario of interest (See Figure 1).
We assume unknown object (O) with unknown texture, ge-
ometry and reflectance is bounded by a known volume. We
assume that the known volume is a cube 500mm on a side. It
is further assumed that a thick wall occludes the hidden object
from the source and detector. The source (S) and the detec-
tor (D) are restricted within another bounded volume, again
of the same size: i.e., a cube of size 500 mm. A scatter-
ing object (W) is simultaneously visible to the hidden object,
the source and detector. All virtual sources and virtual detec-
tors are assumed to lie on the surface of this scattering object,
which may not be planar. The entire geometry of the chal-
lenge problem is illustrated in the Figure 1. We are interested
in identifying performance bounds for geometric and photo-
metric recovery given this scene geometry.
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Fig. 2. Mutual coherence and spectral analysis of transient radiance transport matrix: We show the mutual coherence
(lower is better) and singular values (higher is better) of transport matrix A for various configurations of temporal resolution
and detector count with 80k measurements. (a-c) Notice that the transport matrix is well conditioned as the temporal resolution
or the number of virtual detectors is increased. Therefore, systems with improved transient resolution and number of virtual
detectors capture more LATC information.

1.2. Contributions
• Upper bound on geometric reconstruction: We show

that a point scatterer can be localized up to 10 microns
using streak camera (2ps ∼ .6mm), 100-500 microns
for Single Photon Avalanche Diode (SPAD) (50 ps
∼ 15 mm) and Intensified Charged Coupled Device
(ICCD) (200 ps ∼ 60 mm) and around 1 mm using
Photonic Mixer Device (PMD) (1000 ps ∼ 300 mm)
with 80k measurements. This demonstrates that when
the hidden scene is made up of individual point scatter-
ers that are far enough from each other one can improve
localization accuracy far beyond the limit suggested by
the transient temporal resolution.

• Lower bound on photometric reconstruction: We
empirically compute the lower bound on the albedo er-
ror. Any prior-information will increase performance.

2. PRIOR WORK
Transient imaging [10, 11], whereby picosecond resolution
timing information about light incident on a photosensor is
encoded spatially, has long been used to mitigate the effect
of scattering in biological microscopy [12]. More recently,
with the advent of computational imaging techniques, Kir-
mani, et al. [1] demonstrated the possibility of third bounce
imaging using pulsed laser source and picosecond resolution
photodetector. Subsequent work by Velten, et al. [2] achieved
sub-millimeter localization precision within a 40 cm cubic
volume. A variety of work has explored alternative hard-
ware configurations targeting cost or simplicity. Heide, et al.
[7] demonstrated that third bounce imaging is feasible with
significantly cheaper time-of-flight sensors, albeit with lower
precision on the order of centimeters. Further sensor alterna-
tives were proposed by Katz, et al. [13], who utilized a spatial
light modulator to invert the phase modulation induced by the
scattering wall, allowing the hidden object to be imaged by
a conventional CCD camera - an approach suggested prior to

the availability of appropriate phase modulation and recon-
struction techniques [14]. Laurenzis, et al. [6], [15] eval-
uate single-photon avalanche diode devices for use in third
bounce imaging setups, including the possibility of shortwave
infrared illumination. More generally, recent work in other
imaging modalities has considered similar problems, such as
detecting and reconstructing human forms from scattered RF
signals [16],[17], photoacoustic wavefront manipulation for
imaging in scattering biological tissue [18],[19], or utilizing
volumetric random scatterers for synthetic aperture imaging
[20].

In terms of establishing bounds, Kadambi, et al. [8] seek
to determine resolution bounds on third-bounce imaging with
time-of-flight cameras relative to the BRDF the scattering
wall. Their resolution bounds are based on full-width-half-
maxima (FWHM) of the blur size. As the authors note, these
bounds can be surpassed for sparse objects to arbitrarily high
resolution, limited only by signal-to-noise ratio (SNR), and
the sparsity of the object. In fact, for Velten et al. [2] paper,
the predicted FWHM is 5mm, but the sub-mm resolution was
achieved by using sparsity constraints.

3. LINEAR SYSTEM ANALYSIS OF TRANSIENT
RADIANCE TRANSPORT

For geometric (point localization) problems, the transient
transport matrix A should have low mutual coherence [8].
This will ensure that the point scatterer we are trying to lo-
calize has a good margin between the point scatterer we are
trying to localize, and the neighboring points. However, mu-
tual coherence of the linear system only explains the effect
of changing the configuration, but does not quantify the geo-
metric error. In Section 4, we derive the geometric error. For
photometric (voxel albedo recovery) problem, the transient
transport matrix should be invertible.

The analysis of photometric reconstruction performance
should be based on the mutual information (MI) or the mean-
squared-error (MSE) criteria. The MI criterion is preferred
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Fig. 3. Localization Error vs SNR: Localization error is de-
fined as the root-mean-squared distance between the points in
the volume-of-confusion to the true point scatterer. (a) Notice
that improved transient time resolution results in far larger im-
provement in localization accuracy than increased SNR. (b)
Increasing the number of detectors has diminishing returns
compared to improving SNR. Hence, the temporal resolution
has more impact on localization than SNR, which inturn has
more impact than number of detectors.

when computing bounds for an ensemble of hidden scenes
with known statistical prior. In contrast, the MSE criterion
is preferred when analyzing a specific (deterministic) hidden
scene. Furthermore, the MSE lends itself to easier interpreta-
tion when compared to MI. Despite the differences between
the MI and MSE criteria, the two metrics are both depen-
dent on the singular values of transient light transport ma-
trix A. For Gaussian noise case, the MSE on reconstruction
of albedos is given by σ2Trace((A′A)−1) [21], and MI is
1

2
log
|σ2

xA
′A+ σ2I|
|σ2I|

[22], where σ2 is the variance of Gaus-

sian noise and σ2
x is the variance of the Gaussian prior on x.

Note that both these metrics, MSE and MI are intimately re-
lated and crucially depend upon the eigenvalues of the matrix
A′A. In this report, we only use MSE to quantify as the re-
sults are on empirical scenes, but given the similarity between
MSE and MI the results should not change significantly based
on the choice of MSE vs MI.

4. GEOMETRIC RECOVERY (LOCALIZATION)
Given that there is a single point scatterer in a volume, we
want to examine how well we can localize its position in

space. For a given transport mechanism (i.e. matrices rep-
resenting radiance, transient radiance, phase, and transient
phase), signal-to-noise ratio, we can localize the point source
down to a certain volume-of-confusion. We want the volume-
of-confusion to be as small as possible, a size dependent on
parameters surch as imaging system type, number of detec-
tors, and detector signal-to-noise ratio. We define the local-
ization error as the root-mean-squared distance between the
points in the volume-of-confusion to the true point scatterer.
We will quantify the localization error in this section.

4.1. How do transients improve localization over radi-
ance?
Transients provide additional information when compared to
radiance information alone, thereby reducing localization er-
ror. For a given virtual source-detector pair, the temporal in-
formation results in an ellipsoidal locus of points with virtual
source and virtual detector at the focal points of the ellipsoid
[2]. If the albedo is known, the radiance value provides addi-
tional constraints in the form of a hyperboloid. Using multiple
detectors will result in multiple ellipsoids and hyperboloids.
The location of the point scatterer is the intersection of these
ellipses and hyperboloids. Even if the albedo of the point
source is not known a-priori, we can still localize using the
temporal information and then compute the albedo from the
radiance information.

4.2. Reconstruction Using Transient Radiance Transport
Using a transient camera and incoherent pulsed illumination,
the relationship between the spatially varying albedo (x) and
time-resolved sensor measurements (y) can be modeled us-
ing a linear system: y = Ax. Here, each column of matrix
A has mT measurements, where m represents the number of
sensors and T represents the number of time samples mea-
sured at each sensor. Each column of A should ideally be m-
sparse. However, due to the time-jitter of the imaging system,
each column of A will be a sum of m-Gaussian functions,
with shifts representing the time-of-travel of the photons and
standard deviation equal to the time jitter of the imaging sys-
tem. Note that different configuration of A will have differ-
ent number of measurements. Hence, for a fair comparison
across configurations, we repeated the measurements (phys-
ically equivalent to increasing exposure duration or light in-
tensity) so that the number of rows of A are fixed (either 80k
or 1M based on the experiment).

To compute the localization performance of a point scat-
ter via simulations, we have computed the transient response
of the point scatterer at a given location. (Note that, even if
the object is at a different location, the resulting localization
error will not change for a given SNR. However, the signal
strength will decrease.) We also have computed the transient
responses of various voxels around the point scatterer. Re-
peating this process at multiple noise levels, we recovered the
location of the point scatterer using the matched filter algo-
rithm. By measuring the radius of the resulting point cloud at
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Fig. 4. Photometric error vs # detectors: The detectors
are distributed randomly over a unit area (1m × 1m) around
the source and we computed the square reconstruction error
for SPAD and ICCD cameras. For any given tolerance on
the reconstruction error, we need significantly less number of
SPAD detectors compared to ICCD pixels, even though the
temporal resolution of SPAD is just 4 times better than the
ICCD camera

each noise level, we identify the associated localization error.
Figure 3(a) shows the effect of temporal resolution and

SNR on localization error for 16 virtual detectors placed ran-
domly on a 1m × 1m diffuse wall 1.5 m from the known
volume. The temporal resolution is varied to simulate vari-
ous commercially available transient cameras (PMD, ICCD,
SPAD, STREAK). Figure 3(b) shows the effect of number of
detectors and SNR on resolution for SPAD detectors placed
randomly on a 1m × 1m diffuse wall 1.5 m from the known
volume. Note that increasing the number of detectors de-
creases the localization error logarithmically.

5. PHOTOMETRIC RECOVERY (VOLUME OF
SCATTERING SURFACES)

In the most general setting, if the unknown hidden object is
a volume of scattering surfaces, how well can we recover the
per-voxel albedo of the volumetric scatterer? While this is im-
practical (most real-world scenes will likely be surfaces), this
setting assumes the least prior knowledge about the unknown
scene and therefore will allow us to derive lower bounds on
albedo recovery. We have empirically computed the lower
bounds of a system by computing the squared error loss for
different number of detectors.

5.1. Reconstruction Using Transient Radiance Transport
To reconstruct the albedo of each voxel, we first assemble the
A matrix by voxelizing the known volume (in to 12×12×12
grid). As the albedo is bounded between 0 to 1, we generated
a random albedo field x ∼ U123 [0, 1]. We have computed
the measurements at the virtual detectors and added Gaussian
noise based on the desired SNR level. To reconstruct, we have
used pseudo-inverse algorithm (cannot use OMP as the signal

is not sparse). We computed the mean squared error per voxel
of the reconstruction algorithm (which is a function of the
singular values of A matrix) and repeated the procedure for
hundred realizations of x. The results are shown in Figure 4.
This experiment gives the lower bound on the albedo error.
Any prior-information will increase the performance.

6. CONCLUSIONS
We have proposed a linear systems approach to identify the
performance bounds in indirect imaging. We studied the tran-
sient imaging approach in detail and gave a best-case bound
for resolution using localization accuracy. We also studied
the hidden surface reconstruction problem as a function of
various system parameters such as temporal resolution, SNR,
number of detectors, placement of detectors etc.

The bounds show the limitations of a given transient im-
ager and also help us in determining the system-to-be-built for
a task of interest. For example, from Figure 4, if the require-
ments are to build a system with mean-squared-error less than
0.05, and we have SPAD detectors with SNR of 10, we know
that having more than 500 virtual detectors produces negligi-
ble improvement in the reconstruction, for any scene. Real
world problems may come from a class of systems that are
sparse in both spatial locations and image gradients, a scene-
rio in which bounds may be tighter but more difficult to cal-
culate due to non-linear system constraints.

6.1. Key Observations
1. Increasing temporal resolution improves localiza-

tion: The localization improves with improved time
resolution and SNR. However, increasing the tempo-
ral resolution improves localization more significantly
compared to SNR (see Figure 3(a) for details).

2. Increasing the number of virtual detectors improves
localization: As the number of virtual detectors in-
crease, the resolution improves for any given SNR.
However, as the SNR increases, the localization accu-
racy increases significantly in low SNR regimes and
saturates in high SNR regimes. (see Figure 3(b)).

3. Time resolution vs Number of virtual detectors: In-
creasing the number of virtual detectors and their as-
sociated temporal resolution, will both improve perfor-
mance. However, we have noticed that having a small
increase in time-resolution can lead to significant de-
crease in the number of the virtual detectors needed for
any given tolerance in reconstruction error. (see Fig-
ure 4)
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