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ABSTRACT 
 
Learning Tomography (LT) is a nonlinear optimization 
algorithm for computationally imaging three-dimensional 
(3D) distribution of the refractive index in semi-transparent 
samples. Since the energy function in LT is generally non-
convex, the solution it obtains is not guaranteed to be 
globally optimal. In this paper, we describe linear and 
nonlinear tomographic reconstruction methods and compare 
them numerically. We present a review of the LT and, in 
addition, we investigate the influence of the initialization 
and exemplify the effect of regularization on the 
convergence of the algorithm. In particular, we show that 
both are essential for high-quality imaging in strongly 
scattering scenarios. 
 

Index Terms— Optical tomography, digital 
holography, multiple scattering, computational imaging, 
nonlinear optimization. 
 

1. INTRODUCTION 
 
Optical inverse scattering has recently received great 
attention from the scientific community. One of the natural 
avenues to further improve optical microscopy is to account 
for the multiple scattering of light as it passes through the 
sample. This is of particular importance in biological tissues 
because of the rise of biological applications and the fact 
that tissues can be strongly scattering. Moreover, the study 
of dynamical process requires minimally invasive in vivo 
imaging techniques.  Optical tomography (OT) is a non-
toxic technique for three-dimensional (3D) imaging of the 
refractive index distribution in biological samples [1]. The 
knowledge of the refractive index allows one to characterize 
the scattering properties of the sample. This has a potential 
to improve many traditional microscopy methods. For 
example, one can improve fluorescence microscopy [2] by 
taking advantage of wavefront correction techniques [3]. 

 
Mapping the refractive index of a sample is now 
conventionally performed using optical diffraction 
tomography (DT). This technique has been extensively 
studied in the optics community [4-10]. The initial study [4] 
was based on the first Born approximation that accounted 
for single scattering only, which implies a linear relationship 
between the scattering potential and the scattered field. Such 
a method is, however, limited to weakly scattering objects. 
Improvement in reconstruction accuracy was then brought 
by the Rytov approximation [11, 12]. Both the Rytov and 
first Born approximations provide direct formulas to solve 
the inverse scattering problem, i.e., the problem of going 
from the measurements of the scattered field to a model of 
the refractive index distribution within the sample. For 
multiple scattering, the problem becomes nonlinear and 
there is no known closed-form formula. The natural way of 
performing inverse scattering is through numerical 
optimization. Such techniques have been thoroughly 
investigated in many area of science and has been recently 
exported to the field of optical tomography [13]. 
 
In recent works [14, 15], we introduced learning 
tomography (LT), a nonlinear optimization method using 
the beam propagation method (BPM) as a nonlinear forward 
model. The results showed that it was possible to account 
for multiple scattering using the BPM. As generally occurs 
for nonlinear problems, the optimization algorithm may fall 
in local minima of the energy function. In this paper, we 
study the influence of two crucial components of LT, the 
initialization and total variation (TV) regularization, to the 
convergence of the method. In particular, we numerically 
compare the constant initialization against the one obtained 
with Diffraction tomography under Rytov approximation 
[12]. Additionally, we compare the reconstruction quality 
with and without TV regularization. Note that unlike the 
work in [13], our learning tomography approach relies on 
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digital holography for measuring the complex scattered field 
and considers sparsity-driven TV regularization. 
 

 
2. LEARNING TOMOGRPAHY 

 
As other optical tomography methods, LT aims at solving 
the inverse scattering problem. In this particular case we are 
interested in recovering the three-dimensional refractive 
index distribution n(r) of an unknown sample from the 
measurement of the complex optical field scattered as the 
sample is illuminated with plane waves at different angles of 
incidence. This is illustrated in Fig. 1. 
 

 
Fig. 1: Principle of the optical tomography. The scattering object is 
illuminated by N plane waves under different incidence angles. 
The scattered field Ui is recorded for each incident wave. 
 
The object is described by its scattering potential F defined 
as: F(r) = k2 (n(r)2 − n0

2 ) / (4π ) , in which n0 is the refractive 
index of the background material and k is the wave-vector of 
the illumination light in the background medium. The 
scattering of monochromatic coherent light is modeled by 
the following inhomogeneous Helmholtz equation: 
 
 ∇2U + k2U = −4 F(r)U , (1) 
in which the refractive index is space-dependent. This 
equation assumes an equivalent integral form, the 
Lippmann-Schwinger equation: 
 
 U(r) =Uinc (r)+ F(r ')G(r − r ')U(r ')dr '∫  , (2) 

in which U is the total field, Uinc the incident field, and G 
the Green’s function of the Helmholtz operator ∇2 + k2 . It 
is clear from equations (1) and (2) that the total field, hence 
he scattered field, are nonlinear function of the scattering 
potential. As we have shown in previous publications [14, 
15], the split-step Fourier beam propagation method (BPM) 
is an efficient numerical solver for equation (1) [16]. Apart 
from its speed and numerical stability, the BPM has also 
been chosen as a forward model because it allows for a fast 
calculation of the gradient of the error function defined 
below. The BPM accounts for the nonlinearity of the system 
and naturally also for multiple scattering. 

The main idea of LT is not to find a direct inversion formula 
for the nonlinear scattering problem, but rather to solve it as 
an optimization problem. 
 

 
Fig. 2: (a) General experimental setup for optical tomography. A 
coherent source, such as a laser is used. The structure is that of a 
Mac-Zehnder interferometer set up for digital holographic 
measurement (BS = beam splitter, M = mirror). Galvo-mirrors 
(GM) are placed in the signal beam in order to change the 
incidence angle of the light on the sample. The sample itself is 
placed between two microscope objectives (MO). The 
interferogram is captured on a CCD camera and the complex field 
is extracted digitally. 
(b) Principle of the beam propagation method (BPM). The object is 
split into Nz slices, separated by a distance Δz along the main 
propagation direction z. The scattering within the object is 
represented, at each slice, by a phase mask Δφz(x, y) that accounts 
for refractive index variations. Between the phase masks, the light 
is propagated using Fresnel diffraction in a homogeneous medium 
of refractive index n0. 
We start our optimization with some initial guess for the 
refractive index. From that guess, we calculate a set of 
predicted measurements using the BPM and compare the 
prediction to the actual measurements recorded in the 
experiment under the same illumination angles. The error is 
defined as the difference between the prediction and the 
measurement: 

 ε(n) = 1
N

hi (n)−mi
i
∑ 2

, (3) 

where N is the number of views, mi is the actual 
experimental measurement and hi the BPM operator under 
illumination angle i. Another significant element of the 
algorithm, is the use of a regularizing operator at each 
iteration, as demonstrated in [17]. In particular, we use TV  
for edge-preserving piecewise-smooth regularization [18]. 
In addition to TV, we impose lower and upper bounds on 
the refractive index contrast, depending on the nature of the 
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object. The regularizer is denoted by R, and the total cost 
function that we minimize is defined as: 
 
 J(n) = ε(n)+τR(n) , (4) 
	
  
where 𝜏 > 0  is a regularization parameter. The estimate of 
the refractive index is given by 
 
 n̂ = argmin

n
J(n) . (5) 

We carry out the optimization by calculating the gradient 
[15] of the error ε at each step for gradient-based 
optimization. 
 

3. IMPORTANCE OF THE INITIAL GUESS 
 
In this section, we detail the methods we use to calculate the 
initial guess used to initiate the LT algorithm. We compute 
the tomographic reconstruction from the measurements 
using the following methods: 
 
Zero initialization 

In case of zero initialization, the LT algorithm is started 
with no object and light is propagated in a homogeneous 
medium with constant background refractive index n0. 
Therefore, at the first iteration of LT, the predicted field by 
BPM is just the propagation of the incident filed. The 
residual – the difference between the prediction by BPM 
and the experimental measurement – is the scattered field 
itself. The gradient calculated at the first iteration is thus 
based on the scattered field. 
 
Radon tomography 
In this case, diffraction effects are neglected and the light 
rays are assumed to propagate along straight lines. Each ray 
accumulates a phase proportional to the optical path it 
encounters through the object. The object is reconstructed 
slice by slice, each slice being taken perpendicularly to the 
X axis. The incident light beam axis stays perpendicular to 
the X axis and is rotated along it. For each angle, the 
detected data is mapped into a sinogram that can be readily 
inverted using the inverse Radon transform [19] at the end 
of acquisition. 
 
Diffraction tomography with Born and Rytov 
approximations 
Under the assumption of weak scattering, the scattered field 
is much smaller than the incident field. In this case, the total 
field within the integrand of equation (2) can be replaced by 
the incident field: 
 
 Us (r) = F(r ')G(r − r ')Uinc (r ')dr '

V
∫   (6) 

This is widely known as the first Born approximation. The 
consequence of this substitution is that the scattered field 

can be evaluated directly without solving any nonlinear 
equation. The scattered field becomes thus a linear function 
of the scattering potential. Emil Wolf [5] derived a direct 
formula to solve the inverse scattering problem under the 
first Born approximation. This formula, that we may call the 
Wolf transform is the foundation of diffraction tomography. 
A variation of this method is obtained by using the first 
order Rytov approximation. We first perform a change of 
variable: U(r) = eφS (r )+φinc (r )  and Uinc (r) = e

φinc (r ) . The 
following equation can be derived [6]: 
 
 φs (r)Uinc (r) = F(r ')G(r − r ')Uinc (r ')

V
∫ dr '   (7) 

For both approximations, the scattered field that is measured 
is related to the Fourier transform of the scattering potential 
F object. The measurements are mapped onto the surface of 
the corresponding Ewald sphere in the Fourier domain. For 
a given illumination angle, the Ewald sphere is defined by 

k − kx
i( )2 + k − ky

i( )2 + k − kz
i( )2 = k2 = 2 n0⎛

⎝⎜
⎞
⎠⎟
2

, where  

ki = kx
i ,ky

i ,kz
i( )  is the propagation direction of the incident 

field, n0 is the refractive index of the medium and λ is the 
wavelength in free space. Once the measurements have been 
projected, we recover F by taking the inverse Fourier 
transform of the union of all Ewald spheres properly filled 
with the corresponding measurements. 
 

4. RESULTS AND DISCUSSION 
 
We carried out scattering simulation on a homogeneous 15-
micron sphere embedded in a homogeneous material of 
refractive index n0. We study two cases by tuning the 
refractive index of the object: in the first case, shown in the 
left part of Fig. 3, the total optical phase shift induced the 
object is less than a period, i.e. less than 2π. In the second 
case, shown on the right part of Fig. 3, the phase shift is 
larger than 2π. The linear algorithm used to produce the 
initial guess, in the first row of Fig.3 is diffraction 
tomography under Rytov approximation. This 
reconstruction suffers from severe artifacts that are 
suppressed by the regularized LT optimization. 
The result of the simulation as whether LT can approach the 
best solution, strongly depends on the total phase shift. For 
weak phase shifts, the algorithm can converge with the help 
of regularization and proper initialization. For larger phase 
shifts, the algorithm fails to converge even with 
regularization and hard constraint on the upper and lower 
bounds of the refractive index. We interpret this 
phenomenon as the expression of the phase wrapping. Phase 
wrapping induces an ambiguity in the measurements that 
correspond to deep local minima in the cost function. 
In Fig. 4, we show reconstruction obtained with the LT 
algorithm from experimental measurements on a 5 micron 
polystyrene beads immersed in oil. We show the 
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reconstructions for four different initial guesses: constant 
refractive index, Radon transform, and diffraction 
tomography with Born and Rytov approximation. The 
experimental results essentially corroborate the simulations 
in the case of constant and Rytov approximation initial 
guesses. The total phase delay across the beads is above 2π, 
and the meansurement have been unwrapped accordingly. 
Our simulation and experimental results also indicate that 
TV regularization is essential for obtaining the best possible 

LT reconstruction. In particular, for a weekly scattering 
object (left), LT with TV is able to reconstruct the bead even 
from zero initialization. The quality of the reconstruction is 
further boosted by using the diffraction tomography 
initialization.  On the other hand, for strongly scattering 
scenarios (right), TV regularization without DT 
initialization yields poor results. This highlights the fact that 
TV must be supplemented with a good initializer for 
obtaining the best results in strongly scattering scenarios. 

 
Fig. 3: Simulation illustrating the importance of the initial guess on the performance of the LT algorithm. The object is a 15 micron sphere 
in a n = 1.5 refractive index background, illuminated at a wavelength of 532nm. All images are YZ cross sections. The gray scale on each 
figure is the same and is linear from black (n = 1.5) to white (n = 1.55). Left two columns: The object has a refractive index contrast of Δn 
= 0.026, which leads to a total phase shift of 0.76 x 2π. The top row shows the initial guesses, constant zero on the left and Diffraction 
Tomography with Rytov approximation on the right. The second row shows the outcome of LT with no regularization (20 iterations) when 
initiated with the corresponding initial guesses above. The third shows the outcome of LT with TV regularization at each step, starting from 
the same corresponding intitial guesses. Right two columns: simulations corresponding to the right two columns but with an object contrast 
of Δn = 0.052, which leads to a total phase shift of 1.48 x 2π. 

	
  

	
  
Fig. 4: Experimental reconstruction obtained with the LT algorithm (second row) from four different initial guesses (first row, from left to 
right): constant refractive index set to n0 = 1.52, diffraction tomography reconstruction under Born approximation, reconstruction using 
Radon transform, and diffraction tomography reconstruction under Born approximation. 
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