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ABSTRACT
Traditionally, spatial resolution in optical imaging is limited by
diffraction. Although sub-wavelength information is absent in the
measurements, state-of-the-art fluorescence based localization tech-
niques such as PALM and STORM manage to achieve spatial
resolution of tens of nano-meters, but with limited temporal resolu-
tion. A more recent technique super-resolution optical fluctuation
imaging (SOFI) exploits the temporal statistical behavior of un-
correlated fluorescence emissions to practically improve the spatial
resolution by a factor of two over the diffraction limit, but with
considerably faster image capturing. Here we propose to exploit
the sparse nature of the fluorophores distribution, combined with
a statistical prior of uncorrelated emissions such as in SOFI to
achieve spatial resolution comparable to PALM/STORM, while
retaining the temporal resolution of SOFI. We demonstrate our
method on simulations and show improved results over STORM
and SOFI. Our method may facilitate super-resolution imaging and
capturing of intra-cellular dynamics within living cells.

Index Terms— Fluorescence, High-resolution imaging, Com-
pressed sensing, Correlation.

I. INTRODUCTION
Spatial resolution in diffractive optical imaging is limited by

one half of the optical wavelength; this limit is known as Abbe’s
diffraction limit [1]. However, modern microscopic methods en-
able super-resolution, even though information on sub-wavelength
features is absent in the measurements. One of the leading sub-
wavelength imaging modalities is based on fluorescence (PALM
[2] and STORM [3]). Its basic principle consists of imaging the
fluorescent light emitted by fluorophores (point emitters) attached
to regions of interest within the sample. PALM and STORM
rely on acquiring a sequence of diffraction limited images, such
that in each frame only a sparse set of fluorophores are active.
The position of each fluorophore is then found through a super-
localization procedure [4]. Subsequent accumulation of single-
molecule localizations result in a grainy high-resolution image,
which is then smoothed to form the final super-resolved image.
The final image has a spatial resolution of tens of nanometers.

A major disadvantage of these florescence techniques is that
they require tens of thousands of exposures, which leads to a long
acquisition cycle, typically on the order of several minutes [5]. This
implies that fast dynamics - even at the rates of microseconds -
cannot be captured by PALM/STORM. To reduce acquisition time,
an alternative technique named SOFI (super-resolution fluctuation
imaging) was proposed [6], which uses high fluorophore density,
reducing integration time. In SOFI, the emitters usually overlap
in each frame, so that super-localization cannot be performed.
However, the emitted photons, which are uncorrelated between
different emitters, are registered in consecutive frames, that contain
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information in the pixel-wise temporal correlation between them.
The measurements are processed such that correlative information
is used, enabling the recovery of features that are smaller than the
diffraction limit by a factor of

√
2. By calculating higher order

statistics (HOS) in the form of cumulants [7] of each pixel’s time-
trace, a theoretical resolution increase equal to the square root of the
order of the statistics can (in principle) be achieved. Using pixels
cross-correlations over time it is possible to increase the resolution
gain further, to an overall factor that scales linearly with the order
of the statistical calculation [8].

SOFI enables the processing of images with high fluorophore
density, thus reducing the number of required frames for image
recovery and achieving increased temporal resolution over local-
ization based techniques. However, at least thus far, the spatial res-
olution offered by SOFI does not reach the level of super-resolution
obtained through STORM and PALM, even when using HOS. The
use of HOS can in principle increase the spatial resolution, but
higher (than the order of two) statistical calculations require an
increasingly large number of frames for their estimation, degrading
the temporal resolution of SOFI. Moreover, SOFI suffers from a
phenomena known as dynamic range expansion, in which weak
emitters are masked in the presence of strong ones. The effect is
worsened as the statistical order increases.

Achieving super-resolution based on statistical information can
be extended beyond the scope of fluorescence microscopy to
other imaging modalities. In contrast enhanced ultrasound (CUES),
gas micro-bubbles are injected into the bloodstream to image
the vascular system. Several localization based super-resolution
techniques inspired by STORM and PALM were suggested for
CEUS [9], [10]. These methods achieve excellent sub-diffraction
spatial resolution but suffer from similar limitations as their optical
analogues. Inspired by SOFI, the authors of [11] suggested to
exploit the statistical nature of the fluctuations of the micro-bubbles
to image capillaries with sub-diffraction resolution while retaining
clinically relevant temporal resolution. Such ideas suggest that
super-resolution using statistical information can be considered in
a wide context of imaging modalities and not only in fluorescence
microscopy.

Here we propose a method for super-resolution imaging with
short integration time which is also computationally efficient,
leading to fast image reconstruction and is suitable for large-scale
problems. Our approach enjoys the same benefits of SOFI, i.e.
fast frame capturing rate of high fluorophore density frames and
the use of correlative information, while offering the possibility of
reaching a comparable, single-molecule resolution such as STORM.
In fluorescence microscopy we rely on fluorophores which attach
only to specific objects of interest. Thus, only sparse areas within
the imaged sample emit light. We propose to use sparse recovery on
correlation information to achieve recovery with increased spatial
resolution, comparable to super-localization methods, while retain-
ing a short temporal acquisition time similar to SOFI. This may
facilitate super-resolution imaging of dynamic processes within
living cells. We demonstrate these ideas on simulated data and
show that our technique overcomes the dynamic range problem of
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SOFI when high-order statistics are used, and results in improved
image reconstruction.

Mathematically, our method recovers the support of the emit-
ters, by recovering their variance values. Sparse recovery from
correlation information was previously proposed to improve sparse
recovery from a small number of measurements [12], [13], [14].
When the non-zero entries of the sparse signal are uncorrelated,
support size recovery can be theoretically increased up to O(M2),
where M is the length of a single measurement vector. Here we
use similar concepts in order to enhance resolution and improve
SNR in optical imaging. Preliminary results were demonstrated in
[15]. Here, we provide a detailed mathematical formulation and
additional numerical examples.

The rest of the paper is organized as follows: In Section II
we present the problem and explain the key idea of SOFI. In
Section III we formulate our proposed solution. Simulation results
are demonstrated in Section IV.

Throughput the paper, x represents a scalar, x represents a vector
and X a matrix. The notation || · ||p represents the standard p-norm
and ||·||F the Frobenius norm. Subscript xl denotes the lth element
of x and xl is the lth column of X.

II. PROBLEM FORMULATION AND SOFI
Following [6], [8], the acquired fluorescence signal in the object

plane is modeled as a set of L independently fluctuating point
sources, with resulting fluorescence source distribution

J(r, t) =

L−1∑
k=0

δ(r− rk) · sk(t).

Each source (or emitter) has its own time dependent brightness
function sk(t), and is located at position rk ∈ R2, k =
0, . . . , L− 1. The acquired signal in the image plane is the result
of the convolution between J(r, t) and the impulse response of the
microscope u(r) (also known as the point spread function (PSF)),

f(r, t) =

L−1∑
k=0

u(r− rk) · sk(t). (1)

Due to the propagation of light, the microscope can be considered
as a spatial low-pass filter (LPF) [1], so that (1) consists of
frequencies below the cutoff of the PSF. We assume that the
measurements are acquired over a period of t ∈ [0, T ]. Ideally, our
goal is to recover the locations of the emitters, rk and their variance
values with high spatial resolution and short integration time.
The final high-resolution image is constructed from the recovered
variance value for each emitter.

To proceed, we assume the following:
A 1: The locations rk, k = 0, . . . , L−1 do not depend on time.
A 2: The brightness is uncorrelated in space E{si(t1)sj(t2)} =

0, ∀i 6= j, ∀t1, t2.
A 3: The brightness functions sk(t), k = 0, . . . , L−1 are wide

sense stationary with E{sk(t)} = Ek and E{s̃k(t)s̃k(t + τ)} =
gk(τ), ∀τ where s̃k(t) = sk(t)− Ek.

In SOFI, the time-trace of each pixel in the captured movie is
correlated with itself for some time lag τ . Using assumptions 2 and
3, the autocorrelation function at each point r is therefore,

Gf (r, τ) =

L−1∑
k=0

u2(r− rk) · gk(τ). (2)

Usually the zero time-lag is used and the final SOFI image is
the value of Gf (r, 0) at each point r, where gk(0) represents the
variance of emitter sk. We can see from (2) that the autocorrelation
function depends on the PSF squared. If the PSF is assumed to
be Gaussian, its width is reduced by a factor of

√
2. However,

the final SOFI image retains the same low resolution grid as the

captured movie. Similar statistical calculations can be performed
for adjacent pixels in the movie leading to a simple interpolation
grid with increased number of pixels in the high-resolution image,
but at the cost of increased statistical order using cumulants [7].
Higher order statistics reduce the PSF size further but at the expense
of degraded SNR and dynamic range for a given number of frames
[8].

In the next section we introduce our sparsity based method. We
rely on correlations only without resorting to higher order statistics,
thus maintaining a short acquisition time, similar to correlation-
based SOFI. In contrast to SOFI, we exploit the sparse nature of
the emitter’s distribution and recover a high-resolution image on
a much denser grid than the camera’s grid. This leads to spatial
super-resolution without the need to perform interpolation using
higher order statistics [8]. Our approach is based on Fourier domain
analysis, and can be implemented very efficiently.

Since we rely on the assumption of a sparse distribution of
emitters, we emphasize that it is far less restrictive than in PALM
/ STORM. In particular we allow for much higher density of
fluorophores, as long as the features we wish to recover are spatially
sparse. The assumption of uncorrelated emissions provides further
prior information to exploit, while the correlation domain provides
more effective measurements.

III. SPARSE FOURIER SOFI

To increase resolution by exploiting sparsity, we start by intro-
ducing a Cartesian sampling grid with spacing ∆L, which we refer
to as the low-resolution grid. The low-resolution signal (1) can be
expressed over this grid as

f [m∆L, n∆L, t] =
L−1∑
k=0

u[m∆L −mk, n∆L − nk]sk(t), m, n = [0, . . . ,M − 1],

(3)
where rk = [mk, nk]T ∈ R2. We discretize the possible locations
of the emitters rk, over a discrete Cartesian grid i, l = 0, . . . , N−1,
L � N with resolution ∆h, such that [mk, nk] = [ik, lk]∆h for
some integers ik, lk ∈ [0, . . . , N − 1]. We refer to this grid as the
high-resolution grid.

The latter discretization implies that (3) is sampled (spatially)
over a grid of size M ×M , while the emitters reside on a grid of
size N ×N , with the ilth pixel having a fluctuation function sil(t)
(only L such pixels actually contain fluctuating emitters, according
to (3)). If there is no emitter in the il’th pixel, then sil(t) = 0 for
all t. We further assume that the PSF u is known.

Rewriting (3) in Cartesian form with respect to the grid of
emitters yields,

f [m∆L, n∆L, t] =
N−1∑
i=0

N−1∑
l=0

u[m∆L − i∆h, n∆L − l∆h]sil(t).
(4)

For simplicity we assume that ∆L = P∆h for some P ≥ 1, and
consequently N = PM . In addition, it holds that m∆L − i∆h =
(mP − i)∆h. Omitting the spacing ∆h, we can rewrite (4) as

f [mP,nP, t] =

N−1∑
i,l=0

u[mP − i, nP − l]sil(t). (5)

We now what to present (5) in the Fourier domain, which will
lead to an efficient implementation of our method.

Since f [mP,nP, t] is an M × M sequence, denote by
y[m,n, t] = f [mP,nP, t] and its M×M two dimensional discrete
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Fourier transform (DFT), by Y [km, kn, t]. Performing an M ×M
two dimensional DFT on y[m,n, t] yields

Y [km, kn, t] =

M−1∑
m,n=0

f [mP,nP, t]e−j
2π
M
kmme−j

2π
M
knn

=

N−1∑
i,l=0

sil(t)·

MP−P∑
m̂,n̂=0,P,...

u[m̂− i, n̂− l]e−j
2π
MP

kmm̂e−j
2π
MP

knn̂,

where we defined m̂ = mP and n̂ = nP and km, kn =
0, . . . ,M − 1. Next, consider m̂, n̂ = 0, . . . , N − 1 and define
the N ×N sequence,

ũ[m̂, n̂] =

{
u [m̂, n̂] , m̂, n̂ = 0, P, . . . , N − P,

0, else,
(6)

where u is the discretized PSF sampled over M × M points
of the low-resolution grid. Thus, we can equivalently write for
Y [km, kn, t],

Y [km, kn, t] =

N−1∑
i,l=0

sil(t)·

N−1∑
m̂,n̂=0

ũ[m̂− i, n̂− l]e−j
2π
N
kmm̂e−j

2π
N
knn̂.

(7)

By defining p = m̂− i and q = n̂− l, (7) becomes

Y [km, kn, t] = Ũ [km, kn]

N−1∑
i,l=0

sil(t)e
−j 2π

N
kmie−j

2π
N
knl, (8)

with

Ũ [km, kn] =

N−1∑
p,q=0

ũ[p, q]e−j
2π
N
kmpe−j

2π
N
knq. (9)

Note that Ũ [km, kn] is the N × N two dimensional DFT of the
N × N sequence ũ, evaluated at discrete frequencies km, kn =
0, . . . ,M − 1.

From (6) and (9), it holds that Ũ [e−j
2π
N
km , e−j

2π
N
kn ] =

U [e−j
2π
M
km , e−j

2π
M
kn ] for km, kn = 0, . . . ,M − 1 (N = PM ),

where U is the M ×M two dimensional DFT of u sampled on
the low-resolution grid.

Denote the column-wise stacking of each frame Y [km, kn, t] as
an M2 long vector y(t) and in a similar manner, s(t) is a length-
N2 vector stacking of sil(t) for all il. We also define the M2 ×
M2 diagonal matrix, H = diag

{
Ũ [0, 0], . . . , Ũ [M − 1,M − 1]

}
.

Vectorizing (8) then yields

y(t) = H(FM ⊗ FM )s(t) = As(t), A ∈ CM
2×N2

, (10)

where s(t) is an L-sparse vector and FM denotes a partial M×N
DFT matrix (its M rows are the corresponding M low frequency
rows from a full N×N discrete Fourier matrix). Using assumption
A 3, we define the autocorrelation matrix of y(t) as

Ry(τ) = E
{

(y(t)− E{y(t)})(y(t+ τ)− E{y(t+ τ)})H
}
.

(11)
For a discrete time-lag τ and total number of frames T , Ry(τ) is
estimated from the movie frames using the empirical correlation

Ry(τ) =
1

T − τ

T−τ∑
t=1

(y(t)− ȳ)(y(t+ τ)− ȳ)H ,

with

ȳ =
1

T

T∑
t=1

y(t).

From (10),
Ry(τ) = ARs(τ)AH , (12)

for some time-lag τ . Under assumption A 2, Rs(τ) is a diagonal
matrix. Therefore, (12) can be written as

Ry(τ) =

N2∑
l=1

ala
H
l rsl(τ), (13)

with al being the lth column of A, rs(τ) = diag {Rs(τ)} and
rsl(τ) the lth entry of rs(τ). By taking τ = 0 we estimate the
variance of sij(t), i, j = 0, . . . , N − 1 (as written in assumption
A 3), but it is also possible to take into account the fact that the
autocorrelation matrix Ry(τ) may be non-zero for τ 6= 0. For
simplicity we use τ = 0. The support of rs(τ) is equivalent to the
support of s(t), which in turn is equivalent to the locations of the
emitters on a grid with spacing ∆h. Thus, our problem reduces to
recovering the L non-zero values of rsl(0) in (13).

We denote x = rs(0) and use the LASSO formulation [16] to
construct the following convex optimization problem

min
x≥0

λ||x||1 +
1

2

∣∣∣∣∣∣
∣∣∣∣∣∣Ry(0)−

N2∑
l=1

ala
H
l xl

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

, (F-LASSO)

with a regularization parameter λ ≥ 0 and xl denoting the lth entry
in x. We note that it is possible to write a similar formulation to
(F-LASSO), accounting also for τ > 0 (without the non-negativity
constraint).

We solve (F-LASSO) iteratively using the FISTA algorithm [17],
[18], [19], which at each iteration performs a gradient step and then
a thresholding step. By performing the calculations in the DFT
domain, we can calculate the gradient of the smooth part of (F-
LASSO), that is the squared Frobenius norm, very efficiently. Our
technique is summarized in Algorithm 1.

Algorithm 1 FISTA for minimizing (F-LASSO)

Input: L ≥ Lf , Ry(0), λ > 0, Kmax
Initialize z1 = x0 = 0, t1 = 1 and k = 1
while k ≤ Kmax or stopping criteria not fulfilled do

1: xk = T λ
L

(zk − 1
L

(Mzk − v))

2: Project to the non-negative orthant xk(xk < 0) = 0
3: tk+1 = 0.5(1 +

√
1 + 4t2k)

4: zk+1 = xk + tk−1
tk+1

(xk − xk−1)

5: k ← k + 1
end while
return xkmax

IV. SIMULATIONS AND RESULTS
We numerically simulated a movie of sub-wavelength features

over 1000 frames with some additional out-of-focus features and
Gaussian noise with SNR = 14.95dB, defined as

SNR = 20 · log10

||Ymovie||F
||Nmovie||F

,

were Ymovie is an M2 × T matrix, representing the entire blurred,
noise free movie (each movie frame is column stacked as a single
column in Ymovie) and Nmovie is the added noise to all the frames
(same dimensions as Ymovie).
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Fig. 1: Upper row: unprocessed data. (a) Ground truth: high resolution image of simulated sub-wavelength features. (b) Positions of
emitters in a single frame. (c) Diffraction-limited image. (d) Single diffraction limited frame. Lower row: recovered images from a
noisy sequence of 1000 frames. (e) Smoothed ThunderSTORM (f) Correlations SOFI (zero time-lag). (g) 4th order SOFI (in absolute
value, zero time-lag). (h) Our sparsity based method. The figures were contrast enhanced slightly for display purposes only.
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Fig. 2: Normalized cross-sections along the solid line (left) and the dashed line (Right) of Fig. 1, comparing the ground truth (dashed
blue, Fig. 1a), diffraction-limited image (dash dot green, Fig. 1c), smoothed ThunderSTORM (solid thin purple, Fig. 1e), 4th order SOFI
(black dot, Fig. 1g), and our sparsity based method (solid red, Fig. 1h).

In Figure 1a we show the simulated ground truth of the image
with subwavelength features of size 512×512 pixels. The imaging
wavelength is 800nm with a numerical aperture of 1.4. Figure
1b shows the positions of the emitters for the first frame in the
movie, while Fig. 1c shows the diffraction limited image (a sum
of all 1000 frames). Figure 1d shows a single frame from the
simulated movie, where each frame size is 64× 64 pixels and the
pixel size corresponds to 160nm. The PSF was generated using the
freely available PSF generator [20], [21]. Figure 1e shows smoothed
ThunderSTORM [22] reconstruction (freely available code). Since
the ground truth is of size 512× 512 pixels, the raw localizations
image was resized to that size and smoothed with a Gaussian kernel.
Figures 1f and 1g show the second and forth order SOFI images
respectively (absolute values, zero time-lag). SOFI reconstructions
were performed using the freely available code of bSOFI [23],
which also includes a Richardson-Lucy deconvolution step with
the discretized PSF used in our method. Last, Fig. 1h displays the
reconstruction of our method (512 × 512 pixels) after smoothing
with the same kernel used in Fig. 1e.

In Fig. 2 left and 2 right we show selected intensity cross-
sections along two lines. Our method reconstructs images of higher
resolution with more details compared to the ThunderSTORM and
SOFI images.

Figures 1 and 2 demonstrate that our approach achieves in-
creased resolution and additional details over existing methods,
when high labeling density is used, and manages to detect the cavi-

ties within the sub-wavelength features which are absent in the low
resolution movie and ThunderSTROM and SOFI reconstructions.

V. CONCLUSIONS
We proposed a method which improves the spatial resolution

of SOFI. Our approach exploits both the sparse nature of the
emitters and their uncorrelated emissions to facilitate reconstruction
with a spatial resolution comparable to STORM, while retaining
the temporal resolution of SOFI. We compared our reconstruction
to both STORM and SOFI reconstructions on simulated data,
achieving preferable results in terms of support detection and
separation of sub-diffraction features. Similar concepts also apply
to other imaging modalities, such as CEUS scans. We believe
that these improvements may facilitate super-resolution imaging
of dynamic processes within living cells and that the proposed
framework can be extended to a much wider range of imaging
modalities, as long as there are statistical priors which can be
exploited alongside sparsity.
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