
JOINT PARAMETER AND STATE ESTIMATION FOR WAVE-BASED IMAGING AND
INVERSION

Tristan van Leeuwen

Mathematical Institute, Utrecht University, the Netherlands

ABSTRACT

In many applications, such as exploration geophysics, seis-
mology and ultrasound imaging, waves are harnessed to im-
age the interior of an object. We can pose the image forma-
tion process as a non-linear data-fitting problem: fit the coef-
ficients of a wave-equation such that its solution fits the ob-
servations approximately. This allows one to effectively deal
with errors in the observations.

However, a simple wave-equation most likely does not
represent the physics properly. For example, the equation
may only capture one wave-type or the source-term may in-
clude (unknown) random effects. In such cases, it is not de-
sirable to solve the wave-equation exactly. Instead, we can
formulate a joint estimation problem: find the field and the
coefficients such that they obey both physics and observa-
tions approximately. In this formulation we put the physics
and the observations on equal footing, allowing both errors in
the model as well as the observations.

In this paper, I discuss the implications of such a joint
approach and discuss the possibility of estimating the covari-
ance matrices corresponding to errors in the observations and
the physics.

Index Terms— Wave-equation, state estimation, model
error, covariance estimation

1. INTRODUCTION

Many inverse problems in science and engineering are cast
as parameter estimation problems, where the goal is to find
parameters in a pre-defined model such that the predictions
fit the observations. Features in the observations that are
not well-predicted by the (simplified) model are typically re-
moved prior to attempting a fit. These problems often involve
relatively few parameters, a non-linear model, and redundant
observations.

Another class of inverse problems is state estimation,
where the aim is to estimate the (initial) state of a partially
observed system. These problems occur, for example, in
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weather prediction where one wants to estimate the tempera-
ture at time t0 everywhere based on a sparse set of observa-
tions at times t0, t1, . . .. The models used to interpolate the
data are typically linear, but the number of parameters to be
estimated is large. In these applications, it is less common
to remove unwanted features from the data. Instead, a lot
of effort goes into estimating the so-called model-error, that
quantifies to what extend we can expect to be able to fit the
observations [1].

Inverse problems that involve both aspects can typically
be cast as a partial-differential-equation (PDE) constrained
optimization problem, where the goal is to find both the state
(the solution of the PDE) and the parameters (coefficients of
the PDE) such that the sampled state fits the observations.
Model-errors are typically ignored here, allowing one to ef-
fectively eliminate the state by solving the PDE and pose the
problem as a pure parameter estimation problem [2, 3]. Al-
lowing for both errors in the observations as well as the model
is challenging for large-scale applications since it entails opti-
mizing over both the parameters and the state simultaneously.

In this paper I review a joint parameter and state estima-
tion algorithm for PDE-constrained optimization [4] and ex-
tend it to include estimation of the covariance correspond-
ing to model and data errors. The approach is specifically
geared towards a multi-experiment setting, where multiple ex-
periments yield independent observations of the same system,
possibly for different inputs. The underlying assumptions of
the proposed algorithm are that both model and data errors
follow a Normal distribution with zero mean. A compelling
application is seismic imaging, where model errors can be
thought to arise from unknown random sources. A typical
setup is illustrated in figure 1.

The outline of the paper is as follows. In section 2, I intro-
duce the formulation of the joint estimation problem and dis-
cuss how the covariance matrices can be estimated as part of
the optimization procedure. Then, I discuss a basic algorithm
for joint estimation and discuss various extensions in section
3. Numerical examples on a seismic reflection problem are
presented in section 4 and section 5 concludes the paper.
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Fig. 1. Typical imaging setup, where a medium is insonified
(top-left) and its response (top-right) is recorded. Aside from
measurement noise, there is a noise-source in the form of an
un-modelled source (center) inside the medium.

2. THEORY

The relation between the parameters, state and observations
are captured by the process and measurement models,

A(m)u = q + η, (process model)
Pu = d+ ε, (measurement model)

where A(m) is the system matrix, m ∈ RM are the param-
eters of interest, u ∈ CN is the state, q ∈ CN is a source
term, P ∈ CK×N is the sampling operator, d ∈ CK are the
observations and η ∼ N (0, E) and ε ∼ N (0, H) are Gaus-
sian noise terms in the proces and measurement respectively
with covariance matrices E and H . In wave-based imaging
applications A(m) could for example be a discretization of
the scalar Helmholtz operator ω2m + ∇2. Imaging applica-
tions are characterized by a relatively high number of wave-
lengths in the domain of interest (say 102), dictating the use
ofN = O(106) gridpoints for two-dimensional imaging (i.e.,
10 gridpoints per wavelength). The observations are typically
done by a one-dimensional array, which with the same sam-
pling criterion would require K = O(103). We further as-
sume that multiple observations {dl}Ll=1 of the same system
are obtained, possibly for different inputs {ql}Ll=1. For an op-
timal (full) sampling we would need L = O(103).

2.1. Joint parameter and state estimation

The conventional approach to dealing with parameter estima-
tion problems involving PDEs on this scale is to eliminate the
process model explicitly and solving a reduced problem in m
alone

min
m

L∑
l=1

‖PA(m)−1ql − dl‖2H ,

where ‖r‖W = rTW−1r is a weighted norm [2]. This for-
mulation corresponds to a maximum likelihood estimation
(MLE) of m under the assumption that η = 0. In principle
one could formulate a MLE problem to account for noise in
the process model as well using a Gaussian mixture model.
The effective covariance of η is given by A(m)−1EA(m)−T

in this case. The dependence of the covariance on m makes
this a less attractive option from an optimization point-of-
view.

An alternative route is to cast the joint estimation problem
as

min
m,U

L∑
l=1

‖Pul − dl‖2H + ‖A(m)ul − ql‖2E , (1)

where U = [u1, u2, . . . , uL] contains the states for all the ex-
periments. Applying a non-linear optimization method to this
problem directly is not attractive because of the dimensional-
ity of the problem. However, an efficient algorithm may be
devised by eliminating the states ul. Instead of solving the
states directly from the PDE, they are obtained by solving the
following normal equations(

A(m)TE−1A(m) + PTH−1P
)
ul =

A(m)TE−1ql + PTH−1dl,

for each l independently. This is equivalent to a Kalman
smoother [5]. Plugging the solutions ul(m) back into (1)
yields a reduced problem in m alone. More details on this
approach can be found in [6, 4].

2.2. Estimating covariance matrices

To estimate the covariance matrices, we formulate an ex-
tended least-squares problem [7]

min
m,U,H,E

L log(|H|) + L log(|E|)

+

L∑
l=1

‖Pul − dl‖2H + ‖A(m)ul − ql‖2E , (2)

where | · | denotes the determinant. At first glance this makes
the problem even worse, since we now need to optimize over
large (dense) matrices. For a fixedm and U , however, we find
the following closed-form solutions

Ĥ =
1

L
(PU −D) (PU −D)

T
, (3)

Ê =
1

L
(A(m)U −Q) (A(m)U −Q)

T
, (4)

which are effectively sample-variance estimates of the resid-
uals [8]. This approach can be easily extended to accomodate
the estimation of structured covariance matrices. For exam-
ple, if we restrict to diagonal covariance matrices we can esti-
mate the diagonals by computing the squares of the residuals,
i.e., L−1

∑L
l=1 (Pul − dl)

2. If we want to move away from
diagonal approximations of the covariance matrices, we need
to impose some additional restrictions. In fact, as stated here,
the estimate for E is likely to be rank deficient as in general
L < N . In practice we typically even have only a small num-
ber of experiments (L < K) making the estimate of H rank
deficient as well. A promising approach is impose sparsity
constraints on the inverse of the covariance matrix [9, 10].
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2.3. Variable projection

We now formulate the joint estimation problem as an opti-
mization over the parameters m and U alone

min
m,U

f(m,U), (5)

where f(m,U) can be evaluated by substituting the covari-
ance estimates (3)-(4) in (2). The gradients of this reduced
objective with respect to m and uk are now given by

∇mf(m,U) =

L∑
l=1

G(m,ul)
T Ê−1 (A(m)ul − ql) , (6)

∇ul
f(m,U) = PT Ĥ−1 (Pul − dl)

+A(m)T Ê−1 (A(m)ul − ql) , (7)

where G(m,u) = ∂A(m)u
∂m is the Jacobian matrix of A(m)u.

This matrix is typically sparse and can be easily computed
for any givenA. It is remarkable that the sensitivity of the co-
variance matrices w.r.t (m,U) does not enter into the gradient
expression. This follows from the fact that we are differentiat-
ing an optimal value function [11]. The Hessian of f is given
by the Schur complement of the Hessian of the objective in
(2) [12]. We thus find the following expressions

∇2
mf(m,U) =

L∑
l=1

G(m,ul)
T Ê−1G(m,ul)− correction term, (8)

∇2
ul
f(m,U) =

PT Ĥ−1P +A(m)T Ê−1A(m)− correction term, (9)

where the correction terms capture the sensitivity of E and H
w.r.t. m and U .

It can be shown that a (local) minimum of f , together with
the estimated covariance matrices (4)-(3), are a local mini-
mum of the extended least-squares problem (2) [8, 4].

3. ALGORITHM

Using the expressions for the gradient and Hessian presented
above, we can employ a Newton-like method to update
(m,U) simultaneously. Every function evaluation of f then
entails estimating the covariance matrices for the current
(m,U).

The challenge is to devise an algorithm that avoids storing
all the states and works with a structured approximation of the
covariance matrices. To avoid storing all the states, we note
that the extended least-squares problem (2) is quadratic in U ,
and this permits a closed-form solution. Having eliminated
E and H from the problem we loose this property due to the
dependence of the covariance matrices on U . However, if we

ignore the correction term in (9) then the Newton update for
uk is given by

uk :=
(
PT Ĥ−1P +A(m)T Ê−1A(m)

)−1

(
PT Ĥ−1d+A(m)T Ê−1q

)
.

Thus, we can safely discard previous iterates of U as the up-
dated U only depends on previous states through the covari-
ance matrices. We can update m using our favourite Hes-
sian approximation (e.g., L-BFGS) using the gradient expres-
sion derived earlier. Convergence of the overall algorithm
is ensured by the simple fact that we are effectively using
a gradient-descent method in (m,U) with a positive-definite
Hessian approximation. A basic version of this algorithm is
listed in Algorithm 1. Note that we can accumulate all quan-
tities on-the-fly without computing all states simultaneously.

Algorithm 1 basic algorithm
Input: Initial parameter, m, and initial covariance matrices,
E, H .

Output: Parameter and state estimates (m,U) and estimated
covariance matrices E, H
while not converged do

Compute states:
U =

(
PTH−1P +A(m)TE−1A(m)

)−1(
PTH−1D +A(m)TE−1Q

)
Update parameters:
m := m− α∇mf(m,U)
Compute sample covariance matrices:
H := (PU −D) (PU −D)

T

E := (A(m)U −Q) (A(m)U −Q)
T

end while

This algorithm can be applied directly when we restrict
the covariance matrices to be diagonal. For estimating the
full covariance matrix, it is not feasible to use the expression
presented here and we may need to add some regularization.
On top of that, it would be more efficient to update the inverse
of the covariance matrices in order to avoid recomputing the
inverse when solving for U .

4. RESULTS

We test the proposed algorithm on a seismic reflection prob-
lem, where A is a standard finite-difference discretization of
the scalar Helmholtz equation with Sommerfeld boundary
conditions for frequencies 2, 3, 4, 5, 6 Hz (i.e., A is a block
diagonal matrix). The sources, ql, are point-sources located
near the top boundary of the domain. The sampling operator
P samples the wavefield at the receiver locations, near the
top boundary of the domain. A point source is added in the
center of the domain to generate noise in the process model.
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Fig. 2. Soundspeed (km/s) as a function of z, x. The goal is to
recover the anomaly around (1000, 2500) from the response
of the sources (red *) as recorded by the receiver array (green
∇). The additional source of noise is located at (2000, 2500)
(white *)

The dimensions of the problem are N = (101 × 201) × 5
(gridpoints× number of frequencies ), K = 49, L = 49. The
true parameters (soundspeed) are shown in figure 2.

We compare the results of conventional and joint estima-
tion on data generated with and without noise on the process
model. For the joint inversion we use Algorithm 1, with a
Borzilai-Borwein steplength and keep the covariance matri-
ces fixed. For conventional inversion we use a slightly mod-
ified version of Algorithm 1, where the state is obtained as
U = A(m)−1Q. The results from an inversion with constant
covariance matrices (E = I , H = I) are shown in figure 3.
The results on noisy data clearly show the imprint of the noise
source. Having obtained an initial estimate of m and U from
the noisy data, we estimate the covariance matrixE and show
the results in figure 4. In particular, the joint method produces
an estimate of the covariance matrix that can be used to fur-
ther improve the reconstruction.

5. CONCLUSIONS AND DISCUSSION

We showed how model-errors can be incorporated in a joint
parameter and state-estimation framework. A numerical ex-
ample on a seismic reflection problem illustrates the feasibil-
ity of the method; the estimated covariance contains a clear
imprint of the noise in the process model which can be ex-
ploited to further improve the results. So far, we have illus-
trated the method as a two-step approach, where the covari-
ance is estimated a-posteriori for jointly reconstructed para-
maters and states. For fully automatic on-the-fly estimation,
more robust algorithms that include appropriate regulariza-
tion are needed.

The joint parameter and state estimation method with di-
agonal covariance matrices can in principle be scaled to large-
scale problems. Extending the approach to other structured
approximations of the covariance matrices (e.g., sparse or low
rank), requires more sophisticated estimation of the covari-
ance matrix. This would increase the computational cost dra-
matically, since we re-estimate the covariance at each itera-
tion. An obvious solution would be to estimate the covariance
only once every few iterations.
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Fig. 3. Top: reconstruction of the anomaly from noiseless
data using the conventional (left) and joint (right) method.
Bottom: reconstruction using the conventional (left) and joint
(right) method. The imprint of the noise source is clearly
present in both results.
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Fig. 4. Diagonal of the estimate of the covariance matrix E
corresponding to the results shown in figure 3 (bottom). The
estimate resulting from the joint estimation (right) clearly in-
dicates the presence of the noise source, whereas the one re-
sulting from the conventional estimate contains no informa-
tion at all.
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