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ABSTRACT
Sparse representation based classification has gained popularity with
geospatial image analysis in general and hyperspectral image analy-
sis in particular. A central idea with such classification approaches
is that a test pixel (spectral reflectance vector) can be sparsely rep-
resented in a training dictionary of pixels from all classes – in par-
ticular, only training pixels in the dictionary that bear the same class
membership of the test pixel will contribute significant coefficients
in the sparse representation. The traditional applications of such
classifiers to hyperspectral imagery utilize pixel (sample) level infor-
mation, not spatial contextual information. We propose a sparse rep-
resentation based classification paradigm that effectively and opti-
mally captures the key geometric properties in hyperspectral images
– our classifier that is built on this structured sparse representation
then offers very robust classification, including in scenarios where
training and test objects have rotational variations (a common occur-
rence with geospatial images). We validate the proposed approach
with benchmark hyperspectral data and present results demonstrat-
ing the efficacy of the proposed method.

Index Terms— Hyperspectral, shearlets, morphological separa-
tion, structured sparsity.

1. INTRODUCTION

Hyperspectral imaging is becoming increasing popular for a variety
of applications such as remote sensing for ground cover analysis, ter-
restrial/ground based imaging for scene understanding, microscopy
and other laboratory imaging for biomedical applications, etc. With
the emerging popularity of such multi-channel imagery data, there
is also a growing interest in the development of algorithms for ro-
bust image analysis. Traditional image analysis with hyperspectral
data leverages from the material specific discriminatory information
embedded in the spectral reflectance profile of each pixel.

By design, such data contains spectral reflectance over multiple
(hundreds to thousands) spectral channels per pixel, while for most
applications, the key information content may be in some low di-
mensional subspace. Feature reduction [1] is hence very useful with
such data as a pre-processing to analysis tasks such as classifica-
tion. Alternately, classification algorithms that exploit the underly-
ing sparsity [2–4] in the data are becoming increasingly popular.

Sparsity has emerged as a powerful tool for a range of appli-
cations, including compressed sensing, signal denoising and, more
recently, classification. In such representations, most or all of the
information of an unknown signal can be linearly represented by a
small number of atoms in a “dictionary”. Based on this theory, a
sparse representation classifier (SRC) was developed for robust face
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recognition, and was later adapted for other applications, including
hyperspectral image classification. The central idea in SRC and its
variants is to represent a testing sample (e.g. a pixel in a hyper-
spectral image) as a linear combination of all available training sam-
ples (which form an over-complete dictionary) [5–11] — most of
the nonzero or large value entries in the recovered coefficients are
expected to correspond to training samples having the same class
membership as the testing sample. The assumption of such an ap-
proach is that the testing sample approximately lies in the linear span
of the training samples from the same class. We note that by virtue
of their design, such approaches are generally robust to small train-
ing sample sizes, even when the dimensionality of the input space is
large (e.g. with hyperspectral imagery).

In this work, we present a more holistic approach to sparse repre-
sentation based classification that leverages from structured sparsity.
Specifically, given a hyperspectral image, we build a morphologi-
cally decoupled sparse representation, resulting in an ensemble of
dictionaries, each representing a specific type of information (tex-
ture, orientation and scale). We then set up a structured sparse repre-
sentation based classifier by leveraging from the notion of multi-task
joint sparsity over this ensemble of dictionaries, and show that the
resulting approach not only captures spatial context very well, but
also provides rotation invariance. Rotational invariance allows us to
train our classifier on a specific orientation of an object (e.g. a spe-
cific orientation of a building), and use that dictionary to effectively
classify that same object at other orientations.

This paper is organized as follows. We present the related back-
ground and prior work in section 2. We present the proposed ap-
proach in section 3, and provide validation with benchmark hyper-
spectral data in section 4. Concluding remarks are provided in sec-
tion 5.

2. BACKGROUND AND RELATED WORK

Shearlets emerged during the last decade as a powerful refinement
of conventional wavelets and other traditional multiscale representa-
tions [12, 13]. Similar to curvelets [14], shearlets are well-localized
waveforms defined not only over a range of scales and locations,
like wavelets, but also over multiple orientations and with highly
anisotropic shapes (see Fig. 1) so that they are especially efficient to
capture edges and the other relevant geometric features in images.

In the two (spatial) dimensions, shearlets are generated by the
action of anisotropic dilations and shear transformations on a pair of
generator functions. By appropriately choosing the generators and
adding an appropriate coarse scale system, (see [15] for details), one
can define a smooth Parseval frame for L2(R2). Shearlets have been
shown to outperform other state of the art multi-scale representation
systems such as traditional wavelets, curvelets etc.

Although they have been shown to be very useful for denoising
and other related tasks with natural (color) images, their utility for
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Fig. 1: Examples of elements of the shearlet system, at a fixed
scale, for different values of the shear parameter.

classification of high dimensional hyperspectral imagery is relatively
unexplored. Another related development with other representations
such as wavelets and curvelets has been the notion of morphological
separation [16] (partitioning the input image into texture and piece-
wise smooth components). The framework we propose in this pa-
per involves morphological separation of hyperspectral imagery into
texture - a discrete cosine transform (via DCT bases) dictionary, and
a cartoon dictionary (via shearlets bases). We then exploit the re-
sulting structured sparsity in the data for robust hyperspectral image
classification.

3. PROPOSED APPROACH

In this section, we describe our proposed morphologically decou-
pled sparse representation (MDSR) approach in detail. To construct
our ensemble of dictionaries and take advantage of the properties of
shearlets, we adapt an idea originally proposed by us in [17], where
we assume that an image x is a superposition of two geometrically
distinct components

x = xp + xt, (1)

where xp is the piecewise smooth component of the data and xt its
textured component. To represent x, we combine two dictionaries
D = Dp ∪ Dt, where Dt is a local discrete cosine dictionary and
is especially efficient for locally periodic patterns; Dp is a shearlet
dictionary and, as recalled above, is optimally sparse for piecewise
smooth data. The two dictionaries Dp and Dt satisfy the crucial
property of being mutually incoherent as proved in [18, 19]. That
is, each component of x has a sparse representation in one sub-
dictionary but its representation in the other subdictionaries is not
sparse. Assuming x = Dα, we set the minimization problem:

{α̂t, α̂p} = min
αt,αp

η (‖αt‖1 + ‖αp‖1) +
1

2
‖x−Dt αt −Dp αp‖22.

(2)
Note that, since our subdictionaries are tight frames, Dp is the

Moore-Penrose pseudo inverse of the analysis operator Wp associ-
ated with piecewise smooth data, i.e. Dp = W†p and, similarly, Dt

is the Moore-Penrose pseudo inverse of the analysis operator Wt as-
sociated with texture data, i.e., Dt = W

†
t .

Similar to [17], rather than using a sparsity-based synthesis
model as in (2), we prefer a sparsity-based analysis model leading to
the minimization problem

{x̂p, x̂t} = argmin
xp,xt

η‖Wpxp‖1 + η‖Wtxt‖1 + 1
2
‖x− xp − xt‖22

(3)
To further improve the performance, we also include a total variation
regularization term which is useful to reducing possible ringing ar-
tifacts near the edges introduced by expansion approximations [20].

Thus, we have the optimization problem:

min
xp,xt

η‖Wp xp‖1 + η‖Wt xt‖1 + γ TV (xp)

+ 1
2
‖x− xp − xt‖22, (4)

where TV is the Total Variation, which cane be solved using the it-
erative shrinkage algorithm introduced by J. Starck et al. [20]. Once
the separate estimates x̂p and x̂t are obtained as a solution of (4),
the final estimator of x is x̂ = x̂p + x̂t. With multi-channel imagery
such as HSI, we carry out this separation independently per channel
(per individual frame corresponding to each spectral wavelength).

The proposed algorithm is described in Algorithm 1. Here j and
` denote the scale and direction indices in the shearlet transform, and
ja and jf further denote the coarse and fine scales respectively; m
denotes the image dimensionality (number of spectral channels) and
N1 represents the number of available training samples. In the first
step, the MCA operation is undertaken independently on each spec-
tral channel of the hyperspectral image. This provides two types of
dictionaries for SRC based classification: dictionaries corresponding
to shearlet coefficients at different scales and orientations represent-
ing the cartoon like properties of the image, and dictionaries derived
from the recovered DCT image corresponding to texture features.
We would like to point out that our use of shearlet analysis coeffi-
cients and synthesized texture images is deliberate. By working with
shearlet coefficients for classification, our method is able to achieve
orientation invariance in classification (in addition to noise robust-
ness) with an appropriate design of the classifier. With regards to the
texture component of an image, the synthesized texture image con-
tains image specific texture descriptors as opposed to the raw DCT
coefficients which do not carry any information spatially correlated
with information in the original image, thereby being unsuitable in
the proposed approach.

We use MCA as described previously to build an ensemble of
dictionaries — At representing texture components, and {Ap}j`
representing cartoon components via shearlet coefficients at scale
j and orientation ` respectively. This sets up our multi-task joint-
sparse representation model, where a test sample is simultaneously
represented in each of these decoupled components individually, re-
sulting in a weighted global residual over these views. The min op-
eration, r̃ljf = min`( r

l
jf `) that we use to minimize residuals across

all orientations ` at each fine scale jf is crucial to imparting orienta-
tion invariance in the proposed framework. Hence the overall class
membership function computes a weighted sum of residuals across
the texture and approximation dictionaries, and the minimal residual
across orientations at each scale for the fine-scale components. The
weighting factors for each dictionary {wja , wjf `, wt} are estimated
as a Fisher’s like ratio of between class to within class reconstruction
errors

E
(w)
j =

1

N1

c∑
l=1

∑
i∈class-l

‖ai −Ajδl(β̂)‖2,

E
(b)
j =

1

N1(c− 1)

c∑
l=1

∑
i∈class-l

∑
z 6=l

‖ai −Ajδz(β̂)‖2,

wj =
E

(b)
j

E
(w)
j

. (5)

where ai is i-th atom in the dictionary A and c is the number of
classes. These weights scale the residual associated with SRC from
each dictionary such that dictionaries that are more discriminative
are given preference in the overall decision function.
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Algorithm 1 MDSR

1: Input: A vectorized m-dimensional image x ∈ RN
2×m, test

pixel y ∈ Rm.

{Morphological Separation}
2: for all i ∈ 1, 2, . . . ,m do

• Calculate the shearlet and DCT coefficients for xi

(i−th column of x) based on MCA:

{ {α̂ip}j`, α̂it } = MCA ( xi, Dp, Dt ).

• Generate the shearlet coefficient matrix for each scale
j and each direction `: {Cip}j` = {α̂ip}j`.

• Recover the DCT texture image: x̂it = Dtα̂
i
t.

• Extract texture features from x̂it: x̃it = ϕ(x̂it), where
ϕ denotes a textural feature extractor.

3: end for

{Sparse Representation over Ensemble of Dictionaries}
4: Assume {Ap ∈ RN1×m}j` and At ∈ RN1×m are the training

dictionaries generated from {Cp}j` and x̃t.

5: Obtain representation coefficients ({ {β̂p}j`, β̂t }) correspond-
ing to each dictionary.

{Morphologically Decoupled Classification}
6: Compute residuals: For the test pixel y for l-th class:

rlj` = ‖yj` − {Ap}j`δl({β̂p}j`)‖2,

rlt = ‖yt −Atδl(β̂t)‖2.

7: Rotation invariance: Calculate the minimum residuals of fine
scales jf with regard to different directions d:

r̃ljf = min
`

( rljf ` ).

8: Adaptive weighting of residuals: Use (5) to estimate scaling of
residuals corresponding to every dictionary.

9: Classification: Determine the class label of a test pixel y based
on:

ω = argmin
l=1,2,...,c

(wjar
l
ja +

∑
jf `

wjf `r̃
l
jf ` + wtr

l
t).

10: Output: A class label ω.

To learn the joint sparse representation coefficients in step 5 of
the algorithm, the goal is to obtain a row-sparse coefficient matrix
which can be modeled as an `1/`q-regularized least square problem.
For a test sample yj from source j, given the dictionary {Aj}Mj=1

for M sources, the joint sparse coefficient S = [β1, β2, ..., βM ] ∈
Rn×M can be estimated by

Ŝ = argmin
S

M∑
j=1

∥∥∥yj −A
jβj
∥∥∥2
2
+ λ‖S‖1,q, (6)

where ‖S‖1,q is the `1/`q norm defined as ‖S‖1,q =
∑n
k=1

∥∥rk∥∥
q
,

where rk are the row vectors of S. To make the function convex, q
is often set to be greater than 1 (typically 2). Solving the resulting
`1/`q optimization problem results in a sparse coefficient matrix has
common support at the column level. The problem in (6) is con-
vex but non-smooth. An alternating direction method of multipliers
(ADMM) [21, 22] is used to solve this optimization problem. Once
Ŝ is obtained, the class label associated with a test sample is decided
by the total minimal residual

ω = arg min
l=1,2,...,c

M∑
j=1

∥∥∥yj −A
jδl(β̂

j)
∥∥∥2
2

(7)

where δl denotes an indicator function for the lth class — it ensures
that only coefficients β̂j that correspond to atoms from the lth class
contribute to the residual. Henceforth, we assume that we have c
classes in our dictionary and the image. We remark that this ap-
proach is particularly suitable to the proposed morphologically de-
coupled multi-scale framework wherein the image is partitioned into
key texture and cartoon components, resulting inM sub-dictionaries
{Aj}Mj=1 for the hyperspectral image being analyzed. In principle,
the proposed framework can utilize (and will be effective for) any
sparse representation based classifier at the backend, not just this
approach that we chose to validate our framework in this paper.

4. EXPERIMENTAL SETUP AND RESULTS

We validate the proposed approach and compare its efficacy with
traditional hyperspectral classification approaches using a real world
hyperspectral dataset. The image is acquired using an aerial ITRES-
CASI (Compact Airborne Spectrographic Imager) 1500 hyperspec-
tral imager over the University of Houston campus and the neigh-
boring urban area. This geospatial image has spatial dimensions of
1001× 281 pixels with a spatial resolution of 2.5m per pixel. There
are 13 classes and 144 spectral bands over the 380−1050nm wave-
length range, representing common urban classes. Parking lot-1 and
Parking lot-2 represent parking lots with and without cars respec-
tively. This dataset was released by us to the research community
via the IEEE data fusion contest1 and covers a wide geographic area
over the city of Houston — as a result, it is a challenging dataset
with spectral and spatial variability of the various material classes in
the scene. It is now an established benchmark dataset in the commu-
nity [23].

We next summarize key algorithmic parameters used in this pa-
per. We used a two scale of decomposition (each with six orien-
tations) per spectral channel. A Grey Level Co-occurence Matrix
(GLCM) based texture feature extractor was utilized for ϕ in step
2 of Algorithm 1. Specifically, texture features (contrast, entropy,
correlation, energy, homogeneity and variance) are extracted over a
window around each pixel, with a window size (determined empiri-
cally) of 11× 11.

Fig. 2 reveals the rotation invariant property imparted by our
proposed structured sparse representation based classification — by
minimizing the residual over all orientations, we note that in this
example (with the “building” class), even when the orientations be-
tween the training and the testing pixels is different, the area of min-
imal residual correctly identifies the structure of the building class.
We contend that this is very beneficial in geospatial imaging appli-
cations where one often does not have enough exemplars covering
all possible rotations of objects — on the contrary, training data is
often very limited and ground truth is difficult to come by.

1http://hyperspectral.ee.uh.edu/?page_id=459
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Table 1: Classification Accuracy as a function of training samples (number of training pixels per class) with the University of Houston
(airborne) Hyperspectral Image (average overall accuracies along with standard deviations in parenthesis).

Algorithm / Sample Size 5 10 15 20

Proposed (MDSR)
MD, MS, RI & Weighted 85.4 (1.6) 91.5 (1.4) 93.4 (1.6) 95.1 (1.2)

MD, MS & RI 84.5 (1.7) 90.9 (1.7) 93.2 (1.6) 95.1 (1.1)
MD, MS 77.8 (1.9) 87.6 (2.1) 91.5 (1.5) 93.7 (1.5)

Baseline SRC 81.5 (2.8) 86.3 (1.7) 86.8 (1.1) 86.9 (1.2)

Fig. 2: Residual for the building class for a small cropped por-
tion from the UH dataset, cropped over one of the many build-
ings in the scene (shown as a natural color image in a), using
dictionaries comprised of recovered shearlet coefficients (rljf `)
across individual directions (b—g), and using the approach used
in MDSR, (r̃ljf = min`( r

l
jf ` )) — finding the minimum residual

across all orientations (h).

In the next experiment, we report classification accuracy as a
function of training sample size (number of training pixels used per
class). The number of training pixels was varied from 5 through
20 per class (a commonly studied range for geospatial image analy-
sis [2–4], given the small training sample size often encountered with
such applications), while the remaining pixels were used for testing.
To further highlight the rotational invariance property and to avoid
any bias, we ensured that training and test pixels were not taken from
neighboring spatial regions of the aerial imagery. Recall that this be-

ing an urban imagery, there are many classes that have a large degree
of rotational variability across the scene. These results are summa-
rized in table 1. Specifically, we show results by adding the various
components in the proposed framework sequentially (morphological
decoupling, multi-scale analysis, rotational invariance and adaptive
scaling of residuals). With the proposed framework, we present re-
sults with three variations: Morphologically Decoupled, Multi-Scale
(MD, MS), Morphologically Decoupled, Multi-Scale and Rotational
Invariant (MD, MS & RI), and Morphologically Decoupled, Multi-
Scale, Rotational Invariant and Weighted residuals (MD, MS, RI,
& Weighted). MD, MS connotes a multi-task SRC implementation
wherein each scale and orientation of the shearlet coefficients, along
with texture features form a dedicated dictionary, and the final classi-
fication decision is made by minimizing the sum of residuals over all
these dictionaries. In the MD, MS & RI approach, instead of accu-
mulating residuals across all orientations and scales, for each scale,
we pick the smallest residual over all possible orientations. These
“minimum residuals over all orientations” across the various shear-
let scales (and texture) are then summed up. In the final variant of
the proposed method, MD, MS, RI, & Weighted, we weigh individ-
ual dictionaries by weights that reflect their relative discriminative
ability for the classification task. We compare the performance of
this approach to a baseline SRC classifier that is based on spectral
features. We note that the proposed approach significantly outper-
forms the pixel-based variant of SRC. By incorporating rotational
invariance, we get a strong performance boost in the accuracy, due
to the ability of the classifier to model and exploit spatial context
regardless of orientation.

5. CONCLUSIONS

We presented a classification approach that exploits structured spar-
sity in a sparse representation based classification framework and
imparts rotational invariance for classification of high dimensional
geospatial imagery (such as hyperspectral remotely sensed imagery).
By separating the hyperspectral image cube into sub-dictionaries
with specific geometric properties (e.g. piecewise smooth at dif-
ferent scales and orientations, and texture), and proposing an algo-
rithm that imparts rotational invariance, we obtain a significant per-
formance boost in the overall classification performance. We val-
idated the approach with a popular benchmark dataset comprising
of an urban hyperspectral scene, and demonstrated that when using
the proposed approach to impart rotational invariance and exploit
structured sparsity, we get a significant improvement in classifica-
tion performance.
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