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ABSTRACT
Due to the benefits and limitation of different remote sensing

sensors, fusion of the features from multiple sensors, such

as hyperspectral and light detection and ranging (LiDAR) is

an effective method for land cover mapping. In this paper,

we propose a novel ensemble classifier to fuse hyperspectral

and LiDAR datasets for classification. First, morphological

features are used to model spatial and elevation information

from the first few principal components (PCs) of the original

hyperspetcral (HS) image and LiDAR data. Second, we split

different kinds of features (i.e., spectral bands, morphologi-

cal features of hyperspectral and LiDAR), into several disjoint

subsets and apply the data transformation method to each sub-

set. In particular, three data transformation methods, includ-

ing principal component analysis (PCA), linearity preserving

projection (LPP) and unsupervised graph fusion (UGF) are

considered. Third, the features extracted in each subset are

concatenated to classify by a random forest (RF) classifier.

Experimental results on a co-registered HS and LiDAR data

provide the effectiveness and potentialities of the proposed

ensemble classifier.

Index Terms— Ensemble classifier, morphological fea-

tures, hyperspectral, LiDAR

1. INTRODUCTION

Recently, the fusion of information derived from different

sensors, such as hyperspectral (HS), multispectral (MS) and

LiDAR, provides a better understanding of the same area,

when compared to a single sensor [1]. For instance, LiDAR

data provides the height information of different objects [2],

whereas hyperspectral imaging acquires hundreds or thou-

sands of narrow spectral bands, which give a high discrimi-

nation capacity between the various land cover classes [3, 4].

Thanks to the complementary information provided by MS,

HS and LiDAR data, many promising techniques are pro-

posed to fuse these datasets in a classification task [5–10]. A

natural and straightforward way is to stack elevation informa-

tion of LiDAR as additional features to spectral bands from
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optical sensors. A typical example is investigated in [5, 8]

with the aim of classification of complex forest. They in-

dicated that LiDAR can distinguish different classes with

similar spectral signatures. Lemp and Weidner [6] used the

LiDAR data to generate the segmentation map of the scene

and then classified the segmentation regions of the HS data.

Pedergnana et al. [7] computed extended attribute profiles

(EAPs) for both HS (MS) and LiDAR, and then stacked them

with spectral and elevation information for the classification

of a rural and an urban area. Gu et al. [9] proposed a novel

multiple-kernel learning (MKL) model for urban classifica-

tion to integrate heterogeneous features from MS and LiDAR

data. Liao et al. [10–12] proposed a series of graph-based

dimensionality reduction for the classification of HS and

LiDAR data with morphological features.

From the preceding literature review, it can be seen that

three strategies are often adopted to fuse hyperspetral and Li-

DAR data:

• simply concatenating several kinds of feature sources

(i.e., spectral, spatial and elevation information).

• applying dimensionality reduction techniques to the

stacked features.

• integrating the features from HS and LiDAR data to for-

mulate the multiple kernels for kernel-based methods.

However, stacking several kinds of feature sources con-

tains redundant information and increase the dimensionality

as well as the limited training samples, leading to a dissatis-

fied result [13]. Selection of components in dimensionality

reduction, and kernels and parameters in kernel-based meth-

ods is still an open question, which needs to be further in-

vestigated. In order to tackle the above drawbacks, we pro-

posed a novel ensemble classifier of hyperspectral and LiDAR

data using morphological features. This work is inspired by

our previous work: rotation-based ensemble [14, 15]. More

specifically, we use random subspace and data transformation

techniques, including principal component analysis (PCA),

linearity preserving projection (LPP) [16] and unsupervised

graph fusion (UGF) [11] to construct the ensemble. The rest

of this paper is organized as follows. Hyperspectral and Li-

DAR datasets are described in Section 2, as well as morpho-

logical features. The ensemble classifier is proposed in Sec-
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Fig. 1. Flowchart of the proposed ensemble classifier.

tion 3. Section 4 presents the results and analysis. Conclu-

sions are drawn in Section 5.

2. DATASETS AND MORPHOLOGICAL FEATURES

An HS and LiDAR data were acquired by the NSF-funded

Center for Airborne Laser Mapping (NCALM) on June 2012

over the University of Houston and the neighboring area with

the same ground sampling distance (2.5 m). HS data has 144

spectral bands with a wavelength range from 380 to 1050 nm.

The whole scene, consisting of 349 × 1905 pixels, contains

15 classes. Number of training and test samples are shown in

Table 1 and Fig. 4(a) shows the false color image of HS data.

Morphological openings and closings with partial recon-

struction [17] are used to produce morphological features for

both LiDAR data and the first three PCs of the original HS.

For linear structuring elements (SE), the openings or clos-

ings over every 10◦ and use 10% of the length of the SE is

adopted. Then, MPs with 20 openings and closings (range:

5-100, step size:5) are generated. For a disk-shaped SE, MPs

with 15 openings and closings (range: 1-15, step size:1) are

computed. Thus, the size of MPs on HS and LiDAR are 210

and 70, respectively.

3. PROPOSED ENSEMBLE CLASSIFIER

To make all the features sources with the same dimension, we

use kernel principal component analysis (KPCA) [18] to nor-

malize their dimensions and reduce the noise. Moreover, the

dimension of each feature source is normalized to the smallest

dimension of all the feature sources D = 70.

Let XSta =
{

XSpe,XSpa,XElv
}
=

{
xSpe
i , xSpa

i , xEle
i

}n

i=1
denote three kinds of features (i.e., spectral, spatial and ele-

vation information) of training samples with the correspond-

ing label Y = {yi}ni=1, where xSpe
i ∈ R

D, xSpa
i ∈ R

D,

xEle
i ∈ R

D and yi ∈ {1, ..., C} denotes the label informa-

tion, where C is the total number of classes.

The flowchart of the ensemble classifier is shown in Fig. 1

and the main steps are presented as follows.

• First, we split each kind of feature space into K dis-

joint subsets. A subset of each kind of features contain

�D/K� features.

• Second, we apply data transformation to each subset to

produce the new features. In this work, PCA, LPP, and

UGF are adopted.

• Third, we concatenate the extracted components in

each subset to generate the new features, which is

used to train an individual Random Forest (RF) [19]

classifier.

• Finally, we integrate the RF classifiers, which are gen-

erated by repeating the above steps T times, to achieve

the classification result.

Data transformation plays a important role for the pro-

posed ensemble classifier. Generally, the objective of lin-

ear data transformation is to find a transformation matrix W,

which can be obtained from the following eigenvalue decom-

position problem:

S1w = λS2w (1)

where, S1 and S2 are the specific matrices.

In PCA, S1 and S2 are defined as the covariance and iden-

tify matrices. LPP [16] aims at preserving the local neighbor-

hood information the process, in which S1 and S2 are formu-

lated as:

S1 = XStaL(XSta)� (2)

S2 = XStaA(XSta)� (3)
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Table 1. Overall, average, κ and class-specific accuracies.

Class
No of Samples

OriHS EMPsHS EMPsLi EMPsHSLi Stack
Ensemble

Train Test PCA LPP UGF

Grass Healthy 20 1053 80.25 76.92 44.06 81.20 80.34 82.91 80.44 80.82

Grass Stressed 20 1064 79.98 73.31 40.98 80.45 54.51 84.30 88.63 80.83

Grass Synthetis 20 505 97.43 99.60 94.65 99.60 99.60 100.00 100.00 100.00
Tree 20 1056 94.03 89.30 54.45 93.18 90.63 91.76 89.58 87.41

Soil 20 1056 93.94 99.43 77.18 93.09 96.59 99.91 95.55 99.34

Water 20 143 89.51 84.62 73.43 79.02 82.52 94.41 95.80 97.20
Residential 20 1072 47.48 73.51 69.50 68.47 86.38 88.25 89.09 86.66

Commercial 20 1053 27.16 35.04 62.20 67.62 86.32 86.13 86.13 88.79
Road 20 1059 67.14 62.89 41.93 66.01 71.39 89.61 83.95 90.56
Highway 20 1036 38.03 48.65 36.68 42.86 42.66 42.95 53.57 56.66
Railway 20 1054 63.38 75.71 87.86 79.70 91.37 94.40 82.64 93.93

Parking Lot 1 20 1041 37.18 79.54 74.16 68.40 76.37 65.90 80.50 77.23

Parking Lot 2 20 285 31.23 64.91 52.28 57.89 52.28 52.98 57.89 62.11

Tennis Court 20 247 97.57 100.00 97.57 100.00 100.00 100.00 100.00 100.00
Running Track 20 473 86.68 95.56 17.97 98.94 90.91 100.00 92.60 99.79

Overall accuracy (OA) 65.56 74.15 59.60 76.37 77.05 83.91 84.05 85.48
Average accuracy (AA) 68.73 77.27 61.66 78.43 78.59 84.91 85.09 86.75
kappa coefficients (κ) 62.95 72.15 56.22 74.39 75.11 82.56 82.74 84.05

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Classification maps produced by the different schemes. (a) False color compsite image of hyperspectral data. Thematic

maps using (b) Origial spectral bands. (c) EMPsLi. (d) EMPsHSLi. (e) Stack. (f)E-PCA. (g) E-LPP. (h) E-UGF.
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where, L = D − A. A is a symmetric matrix with Aij = 1 if

xSta
i and xSta

j are close, and Aij = 0 if xSta
i and xSta

j are far

apart. D is a diagonal matrix whose entries are column sums

of A.

In UGF [11], S1 and S2 are defined as follows:

S1 = XStaLFus(XSta)� (4)

S2 = XStaAFus(XSta)� (5)

AFus = ASpe � ASpa � AEle (6)

where, � denotes element-wise multiplication, i.e., AFus
ij =

ASpe
ij ASpa

ij AEle
ij . It should be noted that AFus

ij = 1 only if

ASpe
ij = 1, ASpa

ij = 1, and AEle
ij = 1. It implies that xSta

i

is close to xSta
j only if all individual features points xIndi

(Ind ∈ Spe, Spa,Ele) are close to xInd
j , which indicates

that xSta
i and xSta

j have similar spectral, spatial, and evalua-

tion characteristics.

In this paper, data transformation is applied in each subset,

and all components are kept. In this situation, the numbers of

input and output features are both set to be 3× �D/K�. The

excellent performance of the proposed ensemble attributes to

simultaneous improvements in two aspects: 1) promote the

diversity by the use of random subspace and data transfor-

mation on training set [20, 21]; 2) improve the accuracies of

RF classifiers by keeping all extracted components [21]. The

proposed ensemble classifiers with PCA, LPP, and UGF are

named respectively as E-PCA, E-LPP, and E-UGF.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, T and K are set to 10 and 7, respectively.

For the RF, the number of classifiers is set to be 10, and the

number of features in a subset is set to be the default value

(square root of the number of the used features). Different

feature sources are scaled to [0, 1] before classification.

We compare our proposed ensemble classifier with the

following schemes: 1) using the original HS (OriHS); 2) us-

ing the MPs computed on the first three PCs of the original

HS (MPsHS); 3) using the MPs computed on the LiDAR

(MPsLi); 4) stacking MPs computed from both LiDAR and

the first three PCs of the original HS (MPsHSLi); 5) stacking

all normalized dimensional features (Stack). The classifica-

tion results are investigated by measuring the overall accuracy

(OA), the average accuracy (AA), the Kappa coefficient (κ),

and the class-specific accuracies.

Table 1 reports the accuracy values generated by the pro-

posed ensemble classifier along with the compared methods.

From Table 1, we can find that the classification results by

using single feature source are not accurate. However, each

feature source shows its efficiency on various classes. For

instance, spectral features provide discrimination on trees,

grass, and water, whereas LiDAR shows excellent capacity

on separating on man-made objects, e.g., commercial and
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Fig. 3. Sensitivity to the change of (a) number of subsets (K)

and (b) number of classifiers in RF.

railway. Stacking all normalized dimensional features, and

MPs computed from both LiDAR and the first three PCs of

the original HS slightly improve the performance. By using

an ensemble strategy, our proposed methods yield the better

performance than other compared methods. In this case, the

OAs of E-PCA, E-LPP and E-UGF are 83.91%, 84.05%,

and 85.48%, with 9%-24% and 6% that using single feature

source and stacked features. Among the ensemble classifiers,

E-UGF obtains the best result. The main reason is that UGF

aims at combining multiple feature sources to generate the

transformation matrix that can be used to improve the ac-

curacy of member RF classifiers and the diversity, which is

beneficial for the ensemble. In addition, our proposed method

is competitive with the previous study [10], which won the

Best Paper Challenge of the 2014 IEEE GRSS Data Fusion

Contest.

Effects of the number of subsets (K) and the number of

classifiers in RF are shown in Fig. 3. It can be seen that the

proposed ensemble classifier is not sensitive to the two pa-

rameters, which is viewed as the added advantage.

5. CONCLUSION

The main contribution of this paper is to develop a framework

to fuse spectral, spatial, and elevation from multi-sensor data

in an ensemble strategy for the classification task. Morpho-

logical features with partial reconstruction are used to capture

the spatial and elevation from HS and LiDAR data. Experi-

mental results demonstrated its superiority.
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