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ABSTRACT

This paper introduces a pre-training technique for learning discrim-
inative features from electroencephalography (EEG) recordings
using deep neural networks. EEG data are generally only avail-
able in small quantities, they are high-dimensional with a poor
signal-to-noise ratio, and there is considerable variability between
individual subjects and recording sessions. Similarity-constraint
encoders as introduced in this paper specifically address these
challenges for feature learning. They learn features that allow
to distinguish between classes by demanding that encodings of
two trials from the same class are more similar to each other than
to encoded trials from other classes. This tuple-based training
approach is especially suitable for small datasets. The proposed
technique is evaluated using the publicly available OpenMIIR
dataset of EEG recordings taken while participants listened to and
imagined music. For this dataset, a simple convolutional filter
can be learned that significantly improves the signal-to-noise ratio
while aggregating the 64 EEG channels into a single waveform.

Index Terms— EEG, Music Perception, Feature Learning

1. INTRODUCTION

Over the last decade, deep learning techniques have become
very popular in various application domains such as computer
vision, automatic speech recognition, natural language processing,
and bioinformatics where they produce state-of-the-art results
on various tasks. At the same time, there has been very little
progress investigating the application of deep learning in cognitive
neuroscience research, where these techniques could be used to
analyze signals recorded with electroencephalography (EEG) –
a non-invasive brain imaging technique that relies on electrodes
placed on the scalp to measure the electrical activity of the brain.
EEG is especially popular for the development of brain-computer
interfaces (BCIs), which work by identifying different brain states
from the EEG signal.

Working with EEG data poses several challenges. Brain
waves recorded in the EEG have a very low signal-to-noise ratio
and the noise can come from a variety of sources like electrical
surroundings, muscle activity, eye movements, or blinks. Usually,
only certain brain activity is of interest, and this signal needs
to be separated from background processes. EEG lacks spatial

resolution on the scalp with additional spatial smearing caused by
the skull but it has a good (millisecond) time resolution to record
both, slowly and rapidly changing dynamics of brain activity.
Hence, in order to identify the relevant portion of the signal,
sophisticated analysis techniques are required that should also
take into account temporal information.

Furthermore, no matter how much effort one puts into con-
trolling the experimental conditions during EEG recordings, there
will always be some individual differences between subjects and
between recording sessions. This can make it hard to combine
recordings from different subjects to identify general patterns
in the EEG signals. A common way to address this issue is to
average over many very short trials such that differences cancel
out each other. When this is not feasible because of the trial length
or a limited number of trials, an alternative strategy is to derive
signal components from the raw EEG data hoping that these will
be stable and representative across subjects.

This is where deep learning techniques could help. For these
techniques, training usually involves the usage of large corpora.
As EEG data are high-dimensional1 and complex, this also calls
for large datasets to train deep networks for EEG analysis and
classification. Unfortunately, there is no such abundance of EEG
data. Unlike photos or texts extracted from the Internet, EEG data
are costly to collect and generally unavailable in the public domain.
It requires special equipment and a substantial effort to obtain
high quality data. Consequently, EEG datasets are only rarely
shared beyond the boundaries of individual labs and institutes.
This makes it hard for deep learning researchers to develop more
sophisticated analysis techniques tailored to this kind of data.

This paper introduces a pre-training technique called similarity-
constraint encoding that addresses the common challenges of
working with EEG data described above. It is able to learn discrim-
inative features from a small dataset with high data dimensionality
and a bad signal-to-noise ratio. After a brief review of related
work in Section 2, the proposed pre-training technique is intro-
duced in Section 3. Further, Section 4 describes an experiment
that demonstrates a successful application of similarity-constraint
encoding using the publicly availble OpenMIIR dataset. Results
are discussed in Section 5. Section 6 concludes the paper.

1A single trial comprising ten seconds of EEG with 64 channels sampled
at 100 Hz has already 64000 dimensions and the number of channels and the
sampling rate of EEG recordings can be much higher than this.
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2. RELATED WORK

The potential of deep learning techniques for neuroimaging has
been demonstrated very recently for functional and structural
magnetic resonance imaging (MRI) data [1]. Prior applications
of deep learning techniques on EEG data comprise epileptic
seizure prediction using convolutional neural networks (CNNs)
[2], detecting anomalies related to epilepsy using deep belief
nets (DBNs) that process individual “channel-seconds”, i.e.,
one-second chunks from a single EEG channel [3], and classi-
fying different sleep stages using DBNs combined with hidden
Markov models (HMMs) [4]. Furthermore, there have been some
applications of CNNs for BCIs such as classifying steady-state
visual evoked potentials (SSVEPs), i.e., brain oscillation induced
by visual stimuli, by integrating the Fourier transform between
convolutional layers [5] and detecting P300 waves (a well es-
tablished waveform in EEG research) [6]. There has also been
early work on emotion recognition from EEG using deep neural
networks [7, 8]. In our earlier work, we applied stacked denoising
auto-encoders (SDAs) and CNNs to classify EEG recordings of
rhythm perception and identify their ethnic origin – East African
or Western – [9] as well as to distinguish individual rhythms [10].

Our pre-training technique proposed here is further related
to siamese networks [11] and triplet networks [12]. Both meth-
ods process multiple input instances in parallel using identical
pipelines and then try to optimize distances in the embedding
space such that instances belonging to the same class are close to
each other – in contrast to instances from other classes. Siamese
networks consider the absolute (Manhattan) distance between
input pairs using the L1-norm as distance measure and target
values of 0 and 1 for pairs belonging to the same or other classes
respectively. Triplet networks instead consider input triplets
comprising a reference instance as well as a more similar instance
(same class) and a less similar instance (different class). Here,
the L2-norm (Euclidean distance) is applied in the embedding
space. Our proposed approach differs in that we do not aim to
learn a distance metric or an embedding into Euclidean space.
We are looking for distinctive time series using the dot product
for comparison. The rationale behind this is explained in the
following section. These differences are crucial for the success
of our approach as the experiment in Section 4 shows.

3. SIMILARITY-CONSTRAINT ENCODING

The idea of similarity-constraint encoding (SCE) is derived from
auto-encoder pre-training [13]. Usually, EEG trials recorded
during an experiment belong to different conditions, which are
often used as class labels to train a classifier. Demanding that
trials belonging to the same condition are encoded similarly
facilitates learning features representing brain activity that is
stable across trials. Features to be used in classification tasks
should furthermore allow to distinguish between the respective
classes. This can be achieved by a training objective that also
considers how trials from other classes are encoded.

minimize	constraint	violations
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Fig. 1. Processing scheme of a similarity-constraint encoder.

In the most basic form, the encoded representations of two tri-
als belonging to the same class are compared with an encoded trial
from a different class. The desired outcome of this comparison
can be expressed as a relative similarity constraint as introduced
in [14]. A relative similarity constraint (a,b,c) describes a relative
comparison of the trials a, b and c in the form “a is more similar to
b than a is to c.” Here, a is the reference trial for the comparison.
Based on this formalization, we define a cost function for learning
a feature encoding by combining all pairs of trials (a,b) from
the same class with all trials c belonging to different classes and
demanding that a and b are more similar. The resulting set of
trial triplets is then used to train a similarity-constraint encoder
network as illustrated in Figure 1.

All trials within a triplet that constitutes a similarity constraint
are processed using the same encoder pipeline. This results in three
internal feature representations. Based on these, the reference trial
is compared with the paired trial and the trial from the other class
resulting in two similarity scores. We propose to use the dot prod-
uct as similarity measure because this matches the way patterns
are compared in a neural network classifier and it is also suitable to
compare time series. The output layer of the similarity constraint
encoder finally predicts the trial with the highest similarity score
without further applying any additional affine transformations.
The whole network can be trained like a common binary classifier,
minimizing the error of predicting the wrong trial as belonging
to the same class as the reference. The only trainable part is the
shared encoder pipeline. This pipeline can be arbitrarily complex
– e.g., also include recurrent connections within the pipeline.

Optionally, the triplets can be extended to tuples of higher or-
der by adding more trials from other classes. This results in a grad-
ually harder learning task because there are now more other trials
to compare with. At the same time, each single training example
comprises multiple similarity constraints, which might speed up
learning. In the context of this paper, we focus only on triplets.

4. EXPERIMENT

4.1. Dataset and Pre-Processing

The OpenMIIR dataset [15] is a public domain dataset of EEG
recordings taken during music perception and imagination.2 Data
was collected from 10 subjects who listened to and imagined 12
short music fragments – each 7–16 s long. The 12 music stimuli

2Available at https://github.com/sstober/openmiir
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were taken from 8 well-known pieces and comprised 4 songs
recorded each with and without lyrics and 4 purely instrumental
pieces as listed in Figure 2. These stimuli systematically span
several musical dimensions such as meter, tempo and the presence
of lyrics. All stimuli were normalized in volume and kept as
similar in length as possible with care taken to ensure that they all
contained complete musical phrases starting from the beginning of
the piece. The pairs of recordings for the same song with and with-
out lyrics were tempo-matched. The stimuli were presented to the
participants in several conditions while EEG was recorded. This
paper focuses on the perception condition where participants were
asked to just listen to the stimuli. The presentation was divided
into 5 blocks that each comprised all 12 stimuli in randomized
order. In total, 60 perception trials were recorded per subject.

The EEG data were preprocessed as described in [15] using
the MNE-python toolbox [16] to remove unwanted artifacts. We
kept the original sampling rate of 512 Hz and normalized all trial
channels to zero mean and range [−1,1]. Data of one participant
were excluded because of a considerable number of trials with
movement artifacts due to coughing. All trials needed to be cut off
at 6.9 s, the length of the shortest stimulus, as zero-padding would
have easily revealed the classes. This resulted in an equal input size
of 3518 samples times 64 channels for 540 trials from 9 subjects.

4.2. Encoder Pipeline and Classifiers

The primary aim of this experiment was to demonstrate the useful-
ness of the proposed pre-training techniques. Thus, a very simple
encoder pipeline was chosen and the number of hyper parameters
was kept as low as possible to minimize their impact. The encoder
pipeline consisted of a single convolutional layer with just a single
filter and without a bias term. This filter aggregated the 64 raw
EEG channels into a single waveform processing one sample
(over all channels) at a time. I.e. it had the shape 64x1 (channels
x samples). The hyperbolic tangent (tanh) was used as activation
function because its output range matched the value range of the
network inputs ([-1,1]). No pooling was applied.

As an estimate of the unknown signal-to-noise ratio within
the data, a linear support vector machine classifier (SVC) was
trained using Liblinear [17] on

• baseline (1): the raw EEG data,
• baseline (2): the averaged EEG data (mean over all chan-

nels as a naïve filter), and
• the output of the pre-trained encoder pipeline

interpreting an increase in the stimulus classification accuracy as
a reduction of the signal-to-noise ratio. As additional classifier, a
simple neural network (NN) was trained on the encoder pipeline
output. This network consisted of a single fully-connected layer
with a Softmax non-linearity. No bias term was used. This resulted
in one temporal pattern learned for each of the 12 stimuli, which
could then be analyzed. For further comparison, we also trained
and end-to-end neural network that had the same structure as the
encoder pipeline combined with the neural network classifier but
was initialized randomly instead of pre-training. Furthermore, we

also used a siamese network and a triplet network as alternative
method for pre-training. All tested methods are listed in Table 1.

4.3. Training and Evaluation Scheme

A nested cross-validation scheme was chosen that allowed to use
each trial for testing once. The outer 9-fold cross-validation was
performed across subjects, training on 8 and testing on the 9th
subject. The inner 5-fold cross-validation was used for model
selection based on 1 of the 5 trial blocks. Training was divided
into two phases.

In the first phase, the encoder pipeline was trained using the
proposed similarity-constraint encoding technique with the hinge
loss as cost function. Stochastic gradient descent (SGD) with a
batch size of 1000 and the Adam [18] step rule was used. Training
was stopped after 10 epochs and the model with the lowest binary
classification error on the validation triplets was selected. Triplets
were constructed such that all trials within a triplet belonged to
the same subject as the simple encoder pipeline likely could not
easily compensate inter-subject differences. The validation triplets
consisted of a reference trial from the validation trials and the
other two trials drawn from the combined training and validation
set of the inner cross-validation. This way, a reasonable number
of validation triplets could be generated without sacrificing too
many trials for validation.3 The final encoder filter weights were
computed as mean of the 5 fold models. The output of this filter
was used to compute the features for the second training phase.

In the second phase, the two classifiers were trained. For
the SVC, the optimal value for the parameter C that controls the
trade-off between the model complexity and the proportion of
non-separable training instances was determined through a grid
search during the inner cross-validation. For the neural network
classifier, 5 fold models were trained for 100 epochs using SGD
with batch size 120, the Adam step rule, and the hinge loss as cost
function. The best models were selected based on the 12-class
stimulus classification performance on the validation trials and
then averaged to obtain the final classifier.

The experiment was implemented in Python using the frame-
works Theano [19] as well as Blocks and Fuel [20]. The full code
to run the experiment and generate the plots shown in this paper is
available as supplement.4 As the OpenMIIR dataset is public do-
main, this assures full reproducibility of the results presented here.

5. RESULTS

Table 1 lists the classification accuracy for the tested approaches.
Remarkably, all values were significantly above chance. Even
for baseline 2, the value of 12.41% was significant at p=0.001.
This significance value was determined by using the cumulative
binomial distribution to estimate the likelihood of observing a
given classification rate by chance.

3At least 2 of the 5 trials per class and subject are required to construct
within-subject triplets.

4https://dx.doi.org/10.6084/m9.figshare.4530797
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Table 1. Classifier accuracies for the 12-class stimulus identifica-
tion task and significance values for the comparison against our
proposed method using McNemar’s tests (n=540).

Classifier & Input Accuracy McNemar’s test (mid-p) vs. *

SVC, raw EEG 18.52% 0.0002
SVC, raw EEG channel mean 12.41% <0.0001
End-to-end NN, raw EEG 18.15% 0.0001

SVC, siamese network features 12.96% <0.0001
SVC, triplet network features 25.56% 0.29

NN, SCE features 27.22% 0.82
*SVC, SCE features 27.59%

Chim Chim Cheree (lyrics)
Take Me Out to the Ballgame (lyrics)

Jingle Bells (lyrics)
Mary Had a Little Lamb (lyrics)

Chim Chim Cheree
Take Me Out to the Ballgame

Jingle Bells
Mary Had a Little Lamb

Emperor Waltz
Hedwig’s Theme (Harry Potter)

Imperial March (Star Wars Theme)
Eine Kleine Nachtmusik

Fig. 2. 12-class confusion matrices for the music stimuli (listed
on the left) for the classifiers trained on the SCE features. Middle:
SVC. Right: Neural network classifier. Results were aggregated
from the 9 outer cross-validation folds (n=540).

To evaluate whether the differences in the classification accura-
cies produced by the different methods are statistically significant,
McNemar’s tests using the “mid-p” variant suggested in [21] were
applied. The obtained p-values are also shown in Table 1. Using
our proposed similarity-constraint encoding method resulted in the
best classification accuracy. As the very similar confusion matri-
ces in Figure 2 show, the choice of the classifier for the SCE output
had almost no impact on the classification outcome. The very sig-
nificant improvement of the classification accuracy over the two
baselines is a strong indicator for a reduction of the signal-to-noise
ratio. Notably, the pre-trained filter is very superior to the naïve
filter of baseline 2 that was actually harmful judging from the drop
in accuracy. The SCE approach also outperformed the two related
pre-training techniques. However, the difference of 2% compared
to the triplet network was not statistically significant. Investigating
the difference between these two encoder models, we found that
their correct predictions only overlap by 70% which might turn
out beneficial if they were combined in an ensemble. The encoder
weights were much more stable across folds for SCE. Conse-
quently, the temporal patterns learned by the neural network clas-
sifier turned out more crisply defined and sparse. We attribute this
difference to our choice of the dot product as similarity measure.

Apart from the main diagonal in the confusion matrices, two
parallel diagonals can be seen that indicate confusion between
stimuli 1–4 and their corresponding stimuli 11–14, which are
tempo-matched recordings of songs 1–4 without lyrics. Analyzing
the averaged neural network parameters visualized in Figure 3
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Fig. 3. Visualization of the average neural network parameters
(from the 9 outer cross-validation folds). Layer 1: mean of con-
volutional layers from the pre-trained encoders (SCE). The filter
weights only differed in small details across folds. Layer 2: mean
of classifier layers trained in the supervised phase.

shows similar temporal patterns for these stimuli pairs.5 A detailed
analysis of the network layer activations revealed noticeable peaks
in the encoder output and matching weights with high magnitude
in the classifier layer that often coincide with downbeats – i.e.,
the first beat within each measure, usually with special musical
emphasis. These peaks are not visible in the channel-averaged
EEG (baseline 2). Thus, it can be concluded that the encoder filter
has successfully extracted a component from the EEG signal that
contains musically meaningful information.

6. CONCLUSIONS

Trying to determine which music piece somebody listened to
based on the EEG is a challenging problem. Attempting to do
this across subjects and with a small training set (less than 55
minutes in total, or less than 7 minutes per subject), makes the
task even harder. Specifically, in the experiments described above,
classifiers were trained for a 12-class problem with an input
dimensionality of 225,280 given only 5 examples per class and
subject, training on 8 subjects and testing on the 9th.

Thanks to the similarity-constraint encoding (SCE) pre-
training technique introduced in this paper, a simple convolutional
filter was learned that reduced the data dimensionality by factor
64 and at the same time significantly improved the signal-to-noise
ratio. Using the resulting feature representation, the classification
accuracy substantially increased. The trained neural network
classifier is simple enough to allow for interpretation of the
learned parameters by domain experts and facilitate findings about
the cognitive processes. For learning such simple models, the
pre-training is essential as it would be almost impossible to obtain
the result shown in Figure 3 by basic supervised training. As next
step, more complex models – as pre-trained encoders as well as
classifiers – will be tested that are likely to further improve the
classification accuracy.

Acknowledgments: This research was supported by the donation
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Corporation.

5The average model is only for illustration and analysis. For testing, the
respective outer cross-validation fold model was used for each trial.
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