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ABSTRACT

Identification of functional modules from biological network
is a promising approach to enhance the statistical power of
genome-wide association study (GWAS) and improve bio-
logical interpretation for complex diseases. The precise func-
tions of genes are highly relevant to tissue context, while a
majority of module identification studies are based on tissue-
free biological networks that lacks phenotypic specificity.
In this study, we propose a module identification method
that maps the GWAS results of an imaging phenotype onto
the corresponding tissue-specific functional interaction net-
work by applying a machine learning framework. Ridge
regression and support vector machine (SVM) models are
constructed to re-prioritize GWAS results, followed by ex-
ploring hippocampus-relevant modules based on top predic-
tions using GWAS top findings. We also propose a GWAS
top-neighbor-based module identification approach and com-
pare it with Ridge and SVM based approaches. Modules
conserving both tissue specificity and GWAS discoveries are
identified, showing the promise of the proposal method for
providing insight into the mechanism of complex diseases.

Index Terms— GWAS, tissue-specific network, module
identification, hippocampus, Alzheimer’s disease

1. INTRODUCTION

Brain imaging genetics is an emerging field that studies how
genetic variation influences brain structure and function.
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Genome-wide association studies (GWAS) have been per-
formed to identify genetic markers such as single nucleotide
polymorphisms (SNPs) that are associated with brain imaging
quantitative traits (QTs) [1, 2, 3]. These findings, however,
have limited power to explain how the identified SNPs in-
teract to influence QTs. Using the biological networks and
pathways as prior knowledge, integrative analysis have been
performed to discover disease-relevant modules enriched by
GWAS findings to examine collective effects of multiple
genes, with the potential to enhance statistical power and
help biological interpretation [4, 5, 6, 7, 8].

Existing module identification methodologies typically
start from assigning GWAS statistics onto a user-specified
functional interaction network. After that, candidate mod-
ules are formed across the entire network and assessed for
whether to be enriched by the GWAS findings. One suc-
cessful example is the dmGWAS [4], which loads gene-level
p-values onto the network as node weights, and then applies
dense module searching to identify modules with locally
maximized proportion of significant genes. Another exam-
ple is the network interface miner for multigenic interactions
(NIMMI) [5], which scores genes by combining p-values
with connectivities and then constructs modules from high
weighted genes. Protein interaction network-based pathway
analysis (PINBPA) [9] and its extension iPINBPA [8] start
from a seed and expand the module by adding neighbors to
reach a pre-given statistical significance. These strategies are
all bottom-up. The power of the bottom-up strategy could
be limited by multiple comparison correction as it examines
a large number of candidate modules to identify GWAS en-
riched ones. Meanwhile the efficiency could also become
suboptimal when large-scale networks are present.

Most network-based GWAS of quantitative traits are
using tissue-free biological networks such as human PPI
network, without considering tissue specificity. The pre-
cise functions of genes are highly related to their tissue
context, and human diseases result from the disordered in-
terplay of tissue-specific processes [10]. Recently, tissue-
specific genome-scale functional interaction networks have
been constructed to capture the changing functional roles of
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genes across tissues. Disease-gene associations have been re-
prioritized by constructing a support vector machine (SVM)
classifier to reorder GWAS results using tissue-specific net-
work data as features, named as NetWAS (network-wide
association study). It has been implemented on hippocampal
volume in an Alzheimer’s disease (AD) study to re-prioritize
GWAS results and demonstrated that tissue-specific networks
could provide helpful context for understanding complex hu-
man diseases [11]. Note that SVM classifier employed in
NetWAS requires pre-defined threshold to label GWAS re-
sults, and may lose some valuable information embedded in
the continuous z-scores corresponding to the GWAS p-values.

In this study, we propose and compare two novel module
identification frameworks: (i) a machine learning approach
that introduces a regression model into NetWAS to take con-
tinuous z-scores into account (Ridge regression in this paper);
and (ii) a GWAS top-neighbor-based (tnGWAS) searching
approach that extracts densely connected modules from top
GWAS findings. Ridge and tnGWAS both offer a more
efficient, top-down strategy to identify phenotype-relevant
modules, while using slightly different hypotheses: (1) Ridge
hypothesizes relevant modules are enriched by relatively sig-
nificant and functionally-relevant genes; and (2) tnGWAS
hypothesizes that relevant modules consist of top GWAS
findings and their close neighbors. Of note, machine learning
methods (e.g., SVM and Ridge) provide re-prioritized gene
findings, while tnGWAS does not. We demonstrate the effec-
tiveness of the proposed frameworks by applying them to a
hippocampal imaging genetics analysis in the study of AD.

2. MATERIALS AND METHODS

To demonstrate the implementation of Ridge and tnGWAS on
imaging QT-relevant module identification, we apply them to
hippocampal imaging GWAS in AD. Studies with [18F]FDG-
PET have demonstrated that AD is associated with reduced
use of glucose metabolism in hippocampus [12, 13]. We pro-
pose to identify imaging QT-relevant modules, by integrating
a hippocampus-specific functional interaction network and
GWAS results of hippocampal FDG measures.

2.1. Imaging data, genotyping data and GWAS

Imaging data were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). Pre-
processed FDG-PET scans were downloaded from LONI
(adni.loni.usc.edu), and [18F]FDG measurements of hip-
pocampus were extracted based on the MarsBaR AAL atlas.
Genotype data were also obtained from LONI. 989 non-
Hispanic Caucasian participants with both FDG and genotype
data available were studied. Association between the average
FDG measure in the hippocampal region at the baseline and
5,574,300 SNPs was examined by GWAS using PLINK[14].
To facilitate the subsequent network-based analysis, a gene-

level p-value was determined as the second smallest p-value
of all SNPs located in ±20K bp of the gene [15]. A number
of 17,881 protein-coding gene p-values were obtained.
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Fig. 1. Manhattan plot. Blue and red lines correspond to the
p-values of 5e-5 and 5e-7 respectively.

2.2. Hippocampus functional interaction Network

Genome-wide functional interaction networks for specific hu-
man tissues and cell types have been generated to specialize
protein functions and interactions of specific human tissues
[10]. A hippocampus-specific functional interaction network
was downloaded from GIANT (http://giant.princeton.edu/).
Interactions among 17,881 protein-coding genes was ex-
tracted after being mapped by the GWAS results.

2.3. Alzheimer’s disease documented genes

A list of 66 documented AD risk genes were collected to eval-
uate the re-prioritization results from three resources: 24 sus-
ceptibility genes from a large meta-analysis of AD [3], 15
AD-relevant genes from the Online Mendelian Inheritance in
Man Disease database (OMIM), and 40 significant candidates
from the AlzGene database (http://www.alzgene.org/).

2.4. Module identification framework

Two top-down module identification approaches were pro-
posed, machine learning based and GWAS top-neighbor (tnG-
WAS) based. Below we describe their details.

Machine learning based GWAS re-prioritization: Fol-
lowing [10], we trained an SVM model using hippocampus-
specific network connectivity as features and the significance
status based on nominal p=0.01 as labels to re-prioritize
GWAS results. In addition to SVM, we trained a ridge regres-
sion (Ridge) model using also the network data as features
while using z-scores converted from p-values as responses.
Different from classification which required a pre-defined
threshold, regression approaches utilize the complete infor-
mation from the continuous z-scores.

We trained SVM and Ridge models using interactions be-
tween a subset of genes C and all genes as features, and the
z-scores converted from the gene-level p-values of C as re-
sponses (positive or negative labels for SVM). To balance the
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training data, set C was constructed from the combination
of significant gene set A and one third of randomly selected
nonsignificant gene set B, where p=0.01 was used as nomi-
nal significance. Genes were re-prioritized according to their
predictions (Ridge) or distances from separating hyperplane
(SVM). Re-prioritized results offered a more flexible way to
analyze functional associations at different scales.

Concordance of reprioritized GWAS and documented AD genes
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Fig. 2. Performance evaluation of re-prioritized results. (A)
Mean of interactions among top predictions. (B) ROC curves.

To demonstrate the performance of re-prioritization, we
accessed the mean interactions and the area under receiver-
operator characteristic (ROC) curve (AUC) of re-prioritized
genes from Ridge and SVM with original GWAS using 66
documented AD candidates as gold standard positives.

tnGWAS: Starting from a set of significant GWAS find-
ings, tnGWAS includes their immediate neighbors in the re-
sult. tnGWAS hypothesizes that QT-relevant functional mod-
ules consist of top GWAS findings and their close neighbors.
We extracted the interaction matrix containing connectivity
measures between significant GWAS findings and all the
genes, and identified genes highly interacted with ≥1 signifi-
cant gene. In the experiment, we applied gene p-value ≤1e-7
to select significant GWAS findings, and interaction weight
≥0.3 to define strong connectivity. This yielded 4 significant
genes and 120 highly interacted neighbors. In practice, we
can include more top predictions and take more GWAS top
neighbors to obtain larger scale candidate modules.

Identification of GWAS enriched modules: Machine
learning based approaches were designed to yield top gene
findings not only enriched by GWAS results but also densely
connected; while tnGWAS was to identify top GWAS find-
ings together with their immediate neighbors. For module
identification, both frameworks offered a list of candidates
for us to detect GWAS-enriched modules. We clustered top
genes from above to firstly identify candidate modules. Since
one gene could perform functions in multiple pathways, we
employed the Link Clustering algorithm [16] on top genes
to detect communities as clusters of links instead of nodes.
The resulting candidate modules could be overlapping. Top
GWAS findings were used to assess the enrichment of candi-
date module, while significantly enriched ones were identified
as phenotype-relevant modules.
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Fig. 3. Comparison of top 124 findings from Ridge, SVM,
tnGWAS and original GWAS. Heatmaps show the complete
interaction matrix of top predictions. Circular networks show
interactions after filtering weak connections. Nodes in circu-
lar network are colored based on their ranks in GWAS result.

Different from previous bottom-up methods, these top-
down strategies examine only a small number of candidate
modules that are both highly connected and GWAS enriched,
and thus can potentially help increase the statistical power.

Functional annotation: To assess the functional rele-
vance of identified modules, we tested their over-representation
on specific neurobiological functions and signalling path-
ways. We analyzed functional annotation using KEGG path-
ways and Gene Ontology Biological Process (GO-BP).

3. RESULTS

3.1. GWAS of hippocampal QT

GWAS was performed to examine the association between
SNPs and the hippocampal FDG measure. Four SNPs were
identified as significant using p≤5E-7 (see Fig. 1 for the
Manhattan plot), including two within APOE, one within
TOMM40 and one within APOC1. After mapping the SNPs
to 17,881 protein coding regions, four genes were identified
to be significant: APOC1, APOE, PVRL2 and TOMM40.

3.2. Machine learning based re-prioritization

As mentioned earlier, top predictions from machine learning
based re-prioritization would conserve both dense functional
interaction and strong phenotype-relevance. Since tnGWAS
did not assign ranks to top neighbors, we compared the top
predictions from Ridge and SVM with original GWAS to as-
sess their re-prioritization performances. Mean statistics of
functional interactions and AUC were assessed on different
scales of top predictions and shown in Fig. 2.

From Fig. 2(A), both Ridge and SVM yielded much
stronger connectivity than GWAS. Dense interactions among
top predictions demonstrated the advantage of network-based
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Fig. 4. Functional annotation of modules from Ridge.

integration. From Fig. 2(B), Ridge and SVM gained higher
AUC than original GWAS, indicating the AD-relevance of
top predictions by these new approaches. These support the
idea that strong relationships exist between gene and pheno-
type, and that functionally-relevant genes are more likely to
be interacted [17, 18, 19]. Ridge performed better than SVM
in both evaluations, suggesting the value of the continuous
z-scores over the significance status.

3.3. Hippocampus-relevant top predictions

We compared the functional connectivity of top findings
among two machine learning-based methods, tnGWAS, and
original GWAS. For a fair comparison, we focused on top
124 findings, since 124 is the number of top findings from
tnGWAS (see section 2.4). Fig. 3 showed the heatmaps of
connectivity and interaction networks using different thresh-
olds where genes were colored by their original GWAS ranks.

Both heatmaps and networks demonstrate much denser
interactions yielded by Ridge, SVM and tnGWAS than orig-
inal GWAS. tnGWAS, due to the inclusion of immediate
neighbors, gains the densest interaction. Top predictions
from Ridge and SVM are also densely connected. In ad-
dition, they contain more top GWAS findings than tnGWAS
(i.e., more nodes were colored by top GWAS findings). These
observations reflect the different hypotheses behind the two
strategies described earlier. Machine learning approaches
seem to perform better as a whole as they integrate GWAS
results and the tissue-specific network in a better fashion.

3.4. Hippocampus-relevant modules

We focus on top 124 predictions from Ridge given its top per-
formance among four approaches. We preprocessed the func-
tional connectivity network among these 124 genes to keep
interactions with weights ≥ 0.2, and performed link cluster-
ing on this network. 21 modules were identified as candi-
dates after removing those with < 10 genes. Six out of 21
were significantly enriched by top 50 GWAS findings; see Ta-
ble 1. Functional annotation was applied to further examine

functional relevance of identified modules. Fig. 4 shows (A)
the KEGG pathway and (B) GO-BP enrichment results. All
modules except Module 03 have significantly enriched path-
ways, some of which are related to neurodegenerative dis-
eases (e.g., signal transduction like calcium signaling path-
way had shown abnormality in many neurodegenerative dis-
orders like AD [20]). Fig. 4(B) shows GO-BP terms that are
significantly enriched by more than 2 modules. We could
also find a large number of BP terms related to neurologi-
cal system process (e.g., cognition), behavior (e.g., learning
or memory), neurological system process (e.g., neuromuscu-
lar process), all of which had direct or indirect relationships
with neurodegenerative diseases.

Table 1. Details of the identified modules from Ridge.

Ridge Module ID
# of

genes
GWAS Enrichment
p-value (corrected)

Hippocampus

Module 01 21 2.68E-03
Module 02 89 4.84E-04
Module 03 26 7.85E-05
Module 04 11 4.21E-02
Module 05 22 3.10E-03
Module 06 11 4.21E-02

4. DISCUSSIONS AND CONCLUSIONS

We have proposed two top-down module identification frame-
works: machine learning based and tnGWAS. Both ap-
proaches integrate tissue specific functional interaction net-
work with GWAS data to identify phenotype-relevant mod-
ules. Different from previous network-based module identifi-
cation strategies, we start our search from the whole network
to extract GWAS-relevant and highly interacted ones. Ma-
chine learning based approaches re-prioritize GWAS results,
which can facilitate various relevant analyses. Subsequent
enrichment assessment considers both tissue and GWAS
specificities of the identified modules. Possible future direc-
tions include: (1) extending tnGWAS to re-rank identified
top-neighbors using their GWAS statistics and interactions;
and (2) applications to other tissues and omics data.
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