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ABSTRACT

Exploitation of complementary information is the principal
reason for collecting data from multiple neurological sensors.
Since little is known about the latent processes underlying
neural function, it is important to minimize the assump-
tions placed on the data when performing a joint analysis.
This motivates the use of data-driven fusion methods, such
as independent vector analysis (IVA), for the analysis of
neurological data. For neural datasets, the complementary
information exploited by fusion methods may be in the form
of similar spatial activation across datasets, the spatial IVA
(sIVA) model, or similar subject relations across datasets, the
transposed IVA (tIVA) model. Despite the potential power of
these two models, no study has investigated how the differ-
ences in the modeling assumptions of sIVA and tIVA inform
the fusion of real neuro-imaging data. In this paper, we uti-
lize a unique set of multitask functional magnetic resonance
imaging data from 271 subjects to directly compare the sIVA
and tIVA models and visualize their differences using a novel
technique, global difference maps. Through this application,
we note important similarities between the results from the
two methods that increase our confidence in their overall per-
formance, though differences in modeling assumptions result
in certain differences in the decompositions.

Index Terms— FMRI, Data Fusion, Independent Vector
Analysis

1. INTRODUCTION

In many fields, the collection of data from multiple sensors
has become common, since each sensor is expected to pro-
vide a different, yet complementary view of the system under
study [5, 13, 14]. Such data can be multiset, ¢.e., of the same
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type, such as multiple color channels in a video sequence or
financial information from multiple stocks, or multimodal,
i.e., of different types, such as functional magnetic reso-
nance imaging (fMRI) data and electroencephalogram (EEG)
data collected under similar conditions. However, in both
cases, the goal is to maximize the use of available informa-
tion for the given task through optimal utilization of each
dataset. Since, in general, little is known about the relation-
ships between datasets, it is vital to minimize the underlying
assumptions placed on the data, letting it “speak for itself.”
For this reason, data-driven methods, such as independent
vector analysis (IVA), a recent and flexible multiset exten-
sion of independent component analysis (ICA), have proven
useful for the fusion of multiple dataset in many areas, see
e.g.,[9,11,15,24]. However, the performance of these meth-
ods is intimately tied the manner in which the complementary
information across the datasets is expressed.

For neural datasets, such as fMRI, the complementary in-
formation exploited by IVA is either in the form of similar
spatial activation across datasets or similar subject relations
across datasets. Exploitation of the correspondences across
datasets through similar spatial activation is referred to as
the spatial IVA (sIVA) model and is generally used in the
analyses of fMRI data across multiple subjects or multiple
tasks [16,21]. On the other hand, if no such spatial rela-
tions across the datasets exist, such as for multimodal fusion,
the transposed IVA (tIVA) model, which exploits similarities
across subject relations, is used [1]. However, most analyses
show limited success with the tIVA model, since the number
of samples, subjects, is usually limited [1].

In this paper, we make use of a unique set of data that
enables direct comparison of the sIVA model with the tIVA
model, without the number of subjects severely limiting tIVA.
This data, fMRI data drawn from 271 subjects, 121 patients
with schizophrenia and 150 healthy controls, during the per-
formance of three tasks, grants us the unprecedented ability
to study how the differences in the modeling assumptions of
sIVA and tIVA inform the fusion of real neuro-imaging data.
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Fig. 1. Generative models for (a) sSIVA and (b) tIVA. Note that for SIVA the spatial maps are linked across datasets, while for tIVA the subject
covariates that are linked across datasets. Additionally, note that in both cases the shared information across datasets is fully accounted for in

the decomposition.

We also propose the use of global difference maps (GDMs) as
a simple but effective method to visually compare the results
of multiple fusion algorithms and quantify the total discrimi-
native power for each combination of algorithm and dataset.
The remainder of the paper is organized as follows. Section 2
describes the mathematical framework for sIVA and tIVA, the
fMRI tasks and their extracted features, as well as the con-
struction of the global difference maps (GDM). We present
our results in Section 3 and conclude the paper in Section 4.

2. MATERIALS AND METHODS

Due to the differences in timing among each of the tasks, it is
difficult to directly fuse multitask fMRI data. Instead, the data
from each subject and task is first analyzed through a multi-
ple regression using the statistical parametric mapping tool-
box (SPM) [23], where the regressors are created by convolv-
ing the hemodynamic response function (HRF) in SPM with
the desired predictors. Then, features for each subject and
task are generated by applying the appropriate linear contrasts
to the regressor estimates. Such a reduction using lower-
dimensional, yet still multivariate, representations of the data
enables exploration of associations across these feature sets
and facilitates the discovery of links across tasks and simplify
the identification of biomarkers of disease, see e.g., [6,22].

2.1. SIVA

Consider the extension of the noiseless ICA model to K
datasets, as

X = AlSH 1<k <K, 1)

where the kth feature dataset of V' voxels from N subjects,
ch] e RV*V s a linear mixture of the N latent sources,
S¥ e RNV through an invertible mixing matrix, Al €
RY*N_ Due to the inherent scaling and permutation ambi-
guities of ICA, running an ICA for each task individually

and then aligning the results is both impractical and subop-
timal. For this reason and to exploit the similarity of brain
regions across the different tasks, one may apply sIVA to the
collection of K tasks. SIVA seeks to estimate K demixing
matrices, such that the estimated spatial maps are given by
S[g} = W?]ch]. The generative model for sIVA is shown in
Figure la.

Note that the columns of the estimated mixing matrices,
A[Sk] , provide the loadings of the estimated components across
subjects. Thus, the pth column of the kth estimated mixing

matrix, égk]p, represents the relative weights of the pth source

estimate, égk’]p, for each subject. Since each dataset is reduced
to a feature for each subject, it is possible to look for dif-
ferences in the expression of certain components across two
groups, which will yield “biomarkers of disease.” Determi-
nation of these biomarkers is done through the performance
of a two-sample ¢-test on the subject covariations, where one
group is represented by the subject covariations from the pa-
tients with schizophrenia and the other by the subject covari-
ations from the healthy controls [6].

2.2. TIVA

If the K datasets share little or no similarity across spatial
maps, such as for multimodal fusion [1], then the sSIVA model
cannot be used. However, there may exist connections across
datasets in terms of the expression of the different spatial
maps across subjects, ¢.e., subject covariations, that can be
exploited to determine a successful decomposition. This ob-
jective, the estimation of maximally similar subject covaria-
tions across different datasets, forms the fundamental goal of
tIVA and is achieved by first transposing the model in (1),
such that

- () (o) ()

—AlMglH 1<k <K
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Note that through this transposition, the roles of samples and
observations are reversed with respect to sIVA. Unlike sIVA,
tIVA seeks to estimate /X demixing matrices, such that the es-
timated subject covariations are given by S[qlf] = W[Tk]X[TIf}.
The generative model for tIVA is shown in Figure 1b. Ad-
ditionally, note that a lack of similarity across spatial maps
is not the sole reason to use the tIVA model, since its dif-
ferent modeling assumptions may provide additional advan-
tages over the sIVA model. Finally, note that, since V > N,
K, the computational complexity is approximately O(V N?),
O(KVN? + K2V N), and O(KN?3 + K2?N?) per iteration
for ICA, sIVA, and tIVA, respectively.

2.3. Order Selection

Note that the tall nature of the matrices in Figure 1b, neces-
sitates the performance of dimension reduction prior to IVA,
where the order is no larger than V. The selection of an ap-
propriate order for the transposed model, which is vital to the
success of tIVA, is an open question and has received consid-
erably less attention than the problem of order selection for
the sIVA model, see e.g., [7, 8, 12,25,26]. In this paper, we
use the order selection method in [17], since it is the only
method, to our knowledge, that addresses the issue of order
selection for the tIVA model and can be readily applied to the
sIVA model. Using this technique, an order of 24 was esti-
mated and used for both tIVA and sIVA.

2.4. Algorithm Selection

As with all data-driven methods, the use of the appropriate
algorithm is intimately tied to the success of both tIVA and
sIVA. Due to the fact that the subjects specify the samples for
tIVA, a significant number of subjects is needed to have suffi-
cient statistical power. This has, thus far, limited the number
of algorithms that can be used for tIVA to those that solely
exploit second-order statistics (SOS) [1,3]. However, since
we have a relatively large number of subjects in this study, we
can employ an IVA algorithm that exploits both SOS as well
as higher-order statistics (HOS). To this end, we use IVA with
a generalized Gaussian distribution prior (IVA-GGD) [4] as
the IVA algorithm in this work. The multivariate generalized
Gaussian distribution (MGGD) covers a wide range of uni-
modal distributions through the value of a shape parameter 3,
such that the MGGD reduces to a multivariate Gaussian for
B = 1, is super-Gaussian for 8 < 1, is a multivariate Lapla-
cian for 5 = 0.5, and is sub-Gaussian for 5 > 1. The IVA-
GGD algorithm requires a user-specified set of shape param-
eter values and then selects the most appropriate ones from
the list for a given problem. The shape parameters that we
used were: 0.5, 1, and 5. The reason for selecting this set
of parameters is the desire to use the same IVA algorithm for
both sIVA and tIVA, the fact that the Laplacian distribution
provides a good approximation for the spatial maps [19], and

sub-Gaussian distributions are a good approximation of sub-
ject covariations [17], ¢.e., the sources in the tIVA model.

2.5. FMRI Tasks and Extracted Features

The data used in this study is from the Mental Illness and Neu-
roscience Discovery Clinical Imaging Consortium Collection
(available at http://coins.mrn.org/dx) and were obtained from
150 healthy controls and 121 patients with schizophrenia. We
next briefly introduce the tasks used in this study as well as
the multivariate features extracted from each task.

2.5.1. Auditory Oddball Task (AOD)

This auditory task involved subjects listening to three differ-
ent types of auditory stimuli: standard (1 kHz tones occurring
with probability 0.82), novel (computer generated, complex
sounds occurring with probability 0.09), and target (1.2 kHz
tones with probability 0.09, to which a right thumb button
press was required), in a pseudo-random order [10]. For this
task, the regressor was created by modeling the target and
standard stimuli as delta functions convolved with the default
SPM HREF in addition to their temporal derivatives [20]. Sub-
ject averaged contrast images between the target versus the
standard tones were used as the feature for this task.

2.5.2. Sternberg Item Recognition Paradigm Task (SIRP)

In this visual task, the subjects had to remember a set of 1, 3,
or 5 randomly chosen integers between 0 and 9. The subjects
were shown the series of integers and had to indicate, with a
button press with the right thumb, whether it was a member
of the memorized set or not [10]. For this task, the regressor
was created by convolving this probe response block for the
three-digit set with the default SPM HRF [20]. This was done
for both runs of the probe response and the average map was
used as the feature for this task.

2.5.3. Sensory Motor Task (SM)

In this auditory task, the subjects were presented with a se-
quence of auditory stimuli in an increasing then decreasing
step-wise manner. Each tonal change required a button press
with the right thumb. For this task, the regressor was created
by convolving the whole increase-and-decrease block with
the default SPM HRF [20]. For each subject, the average map
was used as the feature for this task.

2.6. GDMs

After the performance of a data fusion method on the three
fMRI datasets, statistically significant biomarkers are found
through a 2-sample ¢-test run on the subject covariations of
each dataset, individually. However, for a given decomposi-
tion there may be multiple significant biomarkers, making a
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Fig. 2. GDMs for the AOD, SIRP, and SM tasks using the methods
ICA, sIVA, and tIVA. The GDMSs for the same method are in the
columns, while the GDMs for the same dataset across methods are
in the rows. These spatial maps correspond to z-maps thresholded
at z = 2.7, where red and orange represent an increase in activation
for controls versus patients and blue represent an increase in activa-
tion in patients over controls. Note that the p-value associated with
each GDM, which assesses the significance of the decomposition, is
shown above the corresponding spatial map.

summarization and comparison of different techniques diffi-
cult. For this reason, we propose to summarize the perfor-
mance of a data fusion method through the use of GDMs,
constructed as follows. For the M z-scored, statistically sig-
nificant, at p < 0.05, biomarkers for each dataset, éL’ﬁJ, 1<
m < M, we construct the GDM for that method and dataset,
ég]D A As

M
iy =S —nl gm 3)
m=1 Zn:l ‘T’ﬂ|

where T, is the t-statistic for the mth statistically significant
biomarker and | - | is the absolute value operator. Thus, the
GDM can be seen as a summary map that captures the whole
difference between patients and controls for a given decom-
position and dataset within that decomposition. Each signif-
icant biomarker is scaled by the value of its corresponding
t-statistic, so it is weighed more if the component is better
able to differentiate between patients and controls. It is im-
portant to note that we can quantify the discriminative power
of a GDM, and thus indirectly the decomposition of a fusion
method, by regressing the GDMs back onto the original task
data, and performing a two-sample ¢-test on the resulting sub-
ject covariations. Finally note that, though not shown here,
the GDMs are more significant than the original biomarkers
due to the fact that they are composed entirely of regions that
are able to differentiate between the two groups.

3. RESULTS AND DISCUSSION

Figure 2 contains the GDMs for both SIVA and tIVA using the
IVA-GGD algorithm. In order to explore the additive value of
each of these fusion models, we also ran ICA on each fea-
ture dataset separately using the entropy bound minimization
(EBM) algorithm [18] and computed GDMs from the results.
There are many interesting points to make in regards to the
GDMs shown in Figure 2 and therefore about the methods
themselves when applied to this data. The first point is that
the GDMs for the AOD task are the most significant for all
three methods. This suggests that the AOD feature dataset is
bringing the most discriminative power to the analysis. Addi-
tionally, when comparing the GDMs derived from ICA with
those from sIVA, our results become less significant, suggest-
ing that there may be some cost to fusing datasets if they are
very different. It is important to note that, in general, we ob-
serve the opposite trend when comparing the GDMs derived
from ICA with those from tIVA, suggesting that tIVA is a bet-
ter way of deriving statistically significant results [2].

Looking at the GDMs, we note that most of the activated
areas are similar for both tIVA and sIVA, increasing our con-
fidence in both sets of results. We also note that the GDMs
for sIVA show more parietal and temporal activation in the
SIRP and SM datasets, respectively, than tIVA. This result
seems reasonable, since greater spatial variability is expected
for sIVA than for tIVA. Additionally, due to the fact that the
activation is also present in the GDMs of ICA, tIVA may
lose some inherent spatial variability of the sources. We also
note that there is clear default mode network activation in the
GDMs for both sIVA and tIVA in the SIRP dataset, though
such activation is not present in the corresponding GDM from
ICA. This result is particularly encouraging, since meaning-
ful activation, not present in a single dataset analysis, has been
drawn out with both fusion models. This, combined with the
increase in sensorimotor activation for the patients over the
controls, suggest that the patients found the task harder than
the controls did. Finally, we note that tIVA retains more of the
sensorimotor regions from the ICA results than sIVA does.

4. CONCLUSIONS

In this paper, we compare two different models for data fu-
sion: the sSIVA model and the tIVA model, for the analysis of
multitask fMRI data. To facilitate the comparison between
these two decompositions, we propose the use of GDMs to
summarize the total discriminative power of each dataset
within a decomposition. Through this application, we find
that the regions in the GDMs are similar across methods, thus
increasing our confidence in the overall result. We also find
that although sIVA has, in general, higher spatial variability
than tIVA, tIVA appears more sensitive to group differences.
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