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ABSTRACT

Functional magnetic resonance imaging (fMRI) is a powerful
tool to analyze brain development and neuronal activity. Iden-
tifying discriminative brain regions between various groups
within a population has generated great interest in recent
years. In this work, we consider the problem of estimating
multiple sparse, co-activated brain regions from fMRI obser-
vations belonging to different classes. More precisely, we
propose a method to analyze functional connectivity differ-
ences between children and young adults. Often, analysis
is conducted on each class separately. Here, we propose to
rely on a generalized fused Lasso penalty to extract both
class-specific and shared co-expressed regions. In order to
validate our method, experiments are performed on an fMRI
dataset comprised of normally developing children from 8 to
21. The results demonstrate that the proposed method is able
to properly extract meaningful sub-networks, which results in
improved classification accuracy between the two classes.

Index Terms— Sparse Models, Joint Lasso, Classifica-
tion, Brain Development.

1. INTRODUCTION

Neuroimaging is heavily used to analyze both brain function
and brain structure. Over the past decade, many studies has
utilized fMRI to analyze various functional activity patterns
in different groups. It is often assumed that the brain operates
as a set of distributed sub-networks[1] that co-activate along
time. As a consequence, there is a great interest in correctly
identifying these sub-networks. For example, the analysis of
resting state fMRI (i.e., in the absence of an experimental
task to be performed by the subject) enables one to extract
the spontaneous patterns of neuronal activity when a person
is at rest. Many such common patterns or co-activated enti-
ties including, e.g., the default mode network (DMN) or the
sensory motor network, are now well known and identified by
the research community[2]. There are many ways to extract
meaningful information from fMRI blood-oxygenation-level
dependent (BOLD) time series, and a compelling framework
is to represent the brain as a network in which:

• Nodes are often defined from a given list of regions
of interest (ROI, e.g. based on brain atlases[3], data-
driven components [4]) or even down to single voxels;

• Edges are characterized by the co-activation between
pairs of nodes: one quantity of interest is functional
connectivity, defined as the pairwise correlation be-
tween nodes along the entire BOLD time series.

Various computational approaches have been proposed for the
identification of such sub-networks. One of the most common
approaches for functional connectivity analysis is probably
Seed-based correlation analysis (SBA), which identifies sets
of voxels that are correlated with a user-specified seed region.
Independent component analysis (ICA) is an interesting data-
driven tool that has been applied[5] to identify statistically
independent spatial/temporal maps from BOLD time series.
Non-negative Matrix Factorization (NMF) methods[6, 7] are
increasingly used to extract multiple potentially overlapped
brain networks by decomposing data matrices into linear
combinations of non-negative basis functions. Others have
been relying on partial correlation[8, 9] to define edges in
the network representing the brain. More recently, Eavani
et al.[1] defined quantities referred to as sparse connectivity
patterns (SCP). Extracted from subjects’ pairwise correlation
matrices, these SCP are essentially sparse, spatially dis-
tributed and synchronous sub-networks that are supposed to
represent different co-activated brain functional regions. We
provide further details about their formulation and estimation
in the next section. Although the same authors proposed a
similar model with a discriminative flavor earlier in [10], in
both works, they only extract one global set of SCP for the
entire population. In this work, we extend such formula-
tion to work with data belonging to different group/classes.
This allows us to naturally extract class-specific sets of SCP.
Furthermore, we propose to use a generalized fused Lasso
penalty to estimate these sets of SCP by jointly using data
from both classes. This leads to an increased estimation
power in terms of SCP components that are common between
children and young adults, which as a consequence is of great
help to identify class-specific patterns within these SCP as
well.
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The rest of this paper is organized as follows: we present in
Section 2 the concept of SCP introduced by Eavani et al.[1]
and propose an extended formulation in the case of multi-
class setups. Our new method is then evaluated on a real
dataset (PNC[11] dataset) in Section 3, followed by some
discussions and concluding remarks in Section 4.

2. IDENTIFYING SHARED NETWORKS

2.1. Presentation of the model

We start by formulating the problem of SCP identification
as defined by Eavani et. al in[1]. Let us assume we have
n ∈ N subjects. For each subject, a BOLD time series of
nt time points and p ROI (nt, p ∈ N) is available. Denote
Ci ∈ Rp×p, i = 1..n the correlation matrix for each subject:
Ci(p1, p2) simply is the temporal Pearson correlation value
between ROI p1 and p2. We can estimate d ∈ N (d ≤ p) SCP
by solving the following problem:

min
x∈Rp×d,W

1

2

n∑
i=1

‖Ci − xWix
T ‖2F + λ1‖x‖1 (1)

where λ1 is a non-negative model parameter, ‖ · ‖F denotes
the Frobenius norm, Wi ∈ Rd×d is a diagonal matrix, and
W = {W1, ..,Wn}. Obviously, Eq.1 boils down to a sparse
population-level rank-d approximation of the set of correla-
tion matrices over all subjects. Coefficients from Wi provide
’subject-specific’ maps, while the d columns of x each define
a SCP, i.e. a set of co-activated regions. Essentially, such
approach reduces the high dimensionality of the correlation
matrix by extracting a small set of strongly correlated com-
ponents. Let us now assume our observations can be divided
into K distinct classes. This can be represented with a label
value yi ∈ Z, i = 1..n for each subject. A direct ’supervised-
flavored’ extension of Eq.1 would be to solve the following
problem:

min
x,W

1

2

K∑
k=1

1

|Nk|
∑
i∈Nk

‖Ci−xkWix
T
k ‖2F +λ1

K∑
k=1

‖xk‖1 (2)

whereNk is the set of observations belonging to the k-th class
(k = 1..K), x = {x1, .., xK} and xk ∈ Rp×d is the SCP for
the k-th class. Let us stress the fact that the model from Eq.2
essentially amounts to perform a separate analysis on popula-
tions from different classes. In practice, one would expect the
set of SCPs xk, k = 1..K to share a certain degree of sim-
ilarity with the SCP belonging to other classes. By perform-
ing separate analysis, we can not exploit these similarities.
Conversely, estimating a global model for all classes might
overlook some important distinctions between the classes. In-
spired by the work of Danaher[12], we propose to further reg-
ularize model from Eq.2 in order to take into account shared

patterns among classes. This new model takes the following
form:

min
x,W

1

2

K∑
k=1

1

|Nk|
∑
i∈Nk

‖Ci − xkWix
T
k ‖2F

+ λ1

K∑
k=1

‖xk‖1 + λ2
∑
k,k′

‖xk − xk′‖1 (3)

where λ2 is a non-negative model parameter. We can see that
this new regularization term essentially amounts to applying
the `1 penalty between corresponding elements of each pair
of SCP across classes. As a result, for increasing values of
λ2, more and more components of x1, .., xK will be identi-
cal: it encourages different classes to share SCP components.
Such penalty has been applied before to joint Gaussian graph-
ical model estimation[12] as well as cross-correlation analysis
formulation for extracting imaging genomic modules [13]. A
schematic diagram illustrating our approach can be seen in
Figure 1. In the next section, we provide some details on how
to solve Eq.3, specifically in the case where K = 2.

2.2. Optimization

In order to optimize the model defined in Eq.(3), we rely on
the alternating direction method of multipliers[14] (ADMM).
Based on variable splitting, it provides a generic and power-
ful framework to solve a wide variety of problems. Let us
consider the following problem:

min
x,z

f(x) + g(z)

s.t. x− z = 0 (4)

By setting f(x) =
∑K

k=1
1
|Nk|

∑
i∈Nk

‖Ci − xkWix
T
k ‖2F

and g(z) = λ1
∑K

k=1 ‖zk‖1 + λ2
∑

k,k′ ‖zk − zk′‖1, we es-
sentially fall back into a split version of Eq.(3). It can be
shown[14] that solving Eq.(4) can be done by breaking down
the original optimization into several subproblems that are of-
ten much easier to solve separately. The general form of the
minimization algorithm can be seen in Algorithm 1.

Algorithm 1 General ADMM minimization algorithm
1: Initialize x0, z0, u0 ∈ Rp

2: Input parameter ρ ∈ R
3: for k = 0 to Convergence do
4: xk+1 := argminx

(
f(x) +

ρ

2
‖x− zk + uk‖22

)
5: zk+1 := argminz

(
g(z) +

ρ

2
‖z − xk − uk‖22

)
6: uk+1 := uk + xk − zk
7: end for
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Fig. 1. Simplified illustration of the proposed method. Using correlation matrices from each classes, we extract sets of co-
activated sub-networks (called SCP) represented by the components of vectors xk, k = 1, 2. In this simple case, a single SCP
is estimated for each class. These SCP are fused during estimation and across classes depending on the weight parameter λ2
in Eq.3. This allows us to extract SCP components that are shared across classes (red sub-network), which in turns facilitates
further identification of differential/class-specific SCP (green and blue sub-networks).

Fortunately, an efficient initialization of x0 that proved to
work well during our experiments can be obtained at fairly
low cost: one just needs to perform a rank-d approximation
of each C̄k =

∑
i∈Nk

Ci, i.e. the mean correlation matrix
for each class. In our case, solving the x-update of Algorithm
1,line 4, with a few gradient estimations has proven to be ef-
ficient during our tests. Regarding the z-update of line 5, an
efficient method in the case of K = 2 classes is detailed in
[12]. In such case, a closed form solution for the minimum
z∗ = (z∗1 , z

∗
2) can be obtained in two steps. First, we calcu-

late:

(z∗1 , z
∗
2) =

 (z1 − λ2/ρ, z2 + λ2/ρ) if z1 > z2 + 2λ2/ρ
(z1 + λ2/ρ, z2 − λ2/ρ) if z2 > z1 + 2λ2/ρ
( z1+z2

2 , z1+z2
2 ) if |z1 − z2| ≤ 2λ2/ρ

where the above operations have to be taken component wise,
although the component index is omitted for the sake of sim-
plicity. Finally, we just need to apply a soft-thresholding[15]
operator with a factor of λ1/ρ to the resulting (z∗1 , z

∗
2). In the

case where more than two classes are present, more advanced
and computationally expansive methods have to be used. In
this work, we will restrict ourselves to only 2 classes, and
refer the reader to [12] for further details.

3. EXPERIMENTS

3.1. Data acquisition and preprocessing

The Philadelphia Neurodevelopmental Cohort[11] (PNC) is a
large-scale collaborative work between the Brain Behaviour

Laboratory at the University of Pennsylvania and the Chil-
dren’s Hospital of Philadelphia. It is available in the dbGaP
database, and contains (among other data modalities[16]) rest
fMRI data for nearly 900 adolescents ages 8 to 21. Standard
preprocessing steps were applied using SPM121, including
motion correction, spatial normalization to standard MNI
space and spatial smoothing with an 8mm FWHM Gaussian
kernel. The influence of motion was further addressed us-
ing a regression procedure, and the functional time series
were band-passed filtered using a 0.01Hz to 0.1Hz frequency
range. Finally, we reduced the dimension of the data by using
the 264 ROI atlas as defined by Power et al.[3]. Since we are
interested in brain development with age, we select a subset
of the full dataset based on age in months. More precisely,
each subject whose age is over 220 months will belong to the
first class (young adults cohort, age 19.54 ± 0.94 years, 87
females out of 167 subjects), while each subject whose age is
under 140 months will belong to the second class (young co-
hort, age 10.27±0.85 years, 101 females out of 165 subjects)
.

3.2. Joint SCP estimation

As mentioned before, we can compute a correlation matrix for
each subject based on the pre-processed regional time series.
We can then apply the model described in Eq.(3) to these cor-
relation matrices. Shared components will be defined as the
pairs (i, j) ∈ [1..p]× [1..d] such that |x̂1(i, j)− x̂2(i, j)| > 0,

1http://www.fil.ion.ucl.ac.uk/spm/
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where x̂k(i, j) is the i-th component of the j-th estimated
SCP for the k-th class. Using that rule, we can define a
shared set of SCP x̂s and differentials SCP for each class
x̂diffk = x̂k − x̂s, k = 1..2. In order to estimate the 3 param-
eters (λ1, λ2 and d) from Eq.(3), we perform a nested grid
search after having divided the original dataset into training
and test subsets (80% training, 20% test). We then further di-
vide the training set into a 5-fold sub-training/validation sub-
set. For each fold, and for each candidate triplet (λ1, λ2, d),
we fit the model from Eq.(3) and estimate x̂s, x̂diff1 and x̂diff2

on the sub-training set. Then, we ’subtract’ x̂s from each ma-
trix Ci, i = 1..n, of the full training set and derive a new ma-
trix such that C̃i = Ci − x̂sW̃i(x̂

s)T where W̃i is a diagonal
matrix solution of argminWi∈Rd×d ‖Ci−x̂sW̃i(x̂

s)T ‖2F . The
lower triangular part of each C̃i is then used as a feature and
passed to a linear SVM classifier on the validation set. The
triplet (λ1, λ2 and d) providing the lowest classification over
the 5-fold cross-validation (on the training set only) is then
retained. The final accuracy of the method is then measured
on the original test set. This whole procedure is repeated 10
times where each time training and test sets are chosen at ran-
dom. Detailed classification results can be seen in Table 1 for
the following methods: the proposed fused model from Eq.3,
the separate analysis from Eq.2, and the simplest model where
the the lower triangular part of each of the ’raw’ correlation
matrices Ci, i = 1..n is used as feature (hence no SCP are
estimated in this case). We can observe that the fused model
provides the highest accuracy as well as the highest area under
the ROC Curve (AUC). The most differential SCP in our test
proved to be the second differential SCP of class 1 (young
adults). Each SCP’s degree of ’differentiality’ can be mea-
sured using a t-test between the coefficients from the weight
matrixWi corresponding to that SCP between the two classes.
It is represented in Fig.2(a), where we can observe that it con-
sists of a connectivity pattern between the frontal lobe, the
right inferior parietal lobule, left supramarginal gyrus and the
left superior temporal gyrus. Histograms of associated coeffi-
cients for each class are displayed in Fig.2(b), where we can
see that on average young adults have a stronger expression
of that particular SCP than children.

Method Accuracy (%) A.U.C
Fused (Eq.3) 0.92± 0.03 0.96± 0.02

Separate (Eq.2) 0.90± 0.02 0.95± 0.02
Raw Matrix 0.86± 0.05 0.90± 0.03

Table 1. Classification accuracy (%) and A.U.C values for
3 different methods, using a SVM classifier. The proposed
methods produces the highest accuracy.

(a) SCP visualisation (axial and sagittal view)

(b) SCP weight for adults/children

Fig. 2. (a) Visualization of the most discriminative SCP using
BrainNet Viewer Package. As can be seen in (b) this SCP is
associated with much stronger reconstructive coefficients in
adults than in children (p-value = 1.22e−12, t-value = 7.26).

4. DISCUSSION

This paper presented a method to extract sparse co-activated
sub-networks from fMRI images. A fused penalty enforces
the assumption that different groups will share some identi-
cal features. Results on real data demonstrate the discrim-
inative power of the method compared to separate analysis
of each class in the context of a brain development study
between young adults and children. In particular, we found
an increased connectivity between the frontal lobe, the right
inferior parietal lobule, left supramarginal gyrus and the left
superior temporal gyrus in young adults compared to young
children. Future work will include further method validation
on synthetic datasets as well as comparison with other joint
penalties (e.g. group-based penalties).
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