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ABSTRACT

While the majority of exploratory approaches search for cor-
relations among features of different modalities, indirect/nonlinear
relations between structure and function have not yet been fully in-
vestigated. In this work, we employ a neural machine translation
model [1] to relate two modalities: structural MRI (sMRI) spatial
components and functional MRI (fMRI) brain states estimated using
a dynamic connectivity model. We consider each of the modalities as
different “languages” of the same brain and fit a translation model to
estimate a model for how structure influences function. Results iden-
tify multiple aligned aspects of brain structure and functional brain
states showing significantly more or less alignment in the patient
group as well as interesting links to other variables such as cogni-
tive scores and symptom assessments. Our novel approach provides
a new perspective on combining brain structure and function by in-
corporating indirect/nonlinear effects and enabling the algorithm to
learn the interplay between structural and the functional networks.

Index Terms— multimodal fusion, deep learning, psychosis,
schizophrenia

1. INTRODUCTION

Multimodal data fusion, combination of two or more types of data
in a joint analysis, can reveal otherwise hidden information in neu-
roimaging related to brain illness [2]. Schizophrenia is a chronic
illness that has served as a testbed for various fusion approaches [3].
Despite great progress, the field is still struggling with unraveling the
complex brain changes associated with schizophrenia. Multivariate
approaches have proven to be quite powerful, but most of these have
focussed on linear relationships. To this end, we developed a novel
nonlinear approach based on deep learning to investigate neuronal
mechanisms underlying structure-function inter-relationships in pa-
tients with schizophrenia.

A number of psychosis-focused fusion studies have been pub-
lished on the different approaches to brain imaging data fusion. A
widely adopted method is spatial overlap that qualitatively describes
the pattern of brain alterations from different modalities indicating
information of brain pathologies [4, 5]. Recently, more informative
data-driven approaches that fuse full data sets from different MRI
modalities are receiving much attention as they make fewer assump-
tions about specific relationship among data sets [6, 7]. These meth-
ods typically extract features from each imaging type and search for
variations in structure-function links in the feature space which sim-
plifies the fusion strategy but enables one to study the full joint in-
formation among modalities including inference on indirect or direct
structure-function relationships [8].

This work was sponsored by NIH grants R01EB006841, R01EB005846,
R01EB020407 and P20GM103472 as well as NSF grant 1539067.

Motivated by the recent development of deep neural network
based machine learning methods [9], we develop a multimodal fu-
sion framework for brain imaging. A limitation of most of the ex-
isting multimodal fusion methods is that they only capture linear
relationship between different modalities [7]. Recent work on deep
learning for unimodal brain imaging has shown that deep belief net-
works (DBNs) can uncover potential hidden relationship and thus
facilitate discovery [10, 11]. We hypothesize that gray matter vari-
ations might interact with the brain functional dynamics in an intri-
cate way, and such relationships are buried in the data. In this work,
we, therefore, utilize the ability of high level representation of deep
models for discovery of brain structure-function links and evaluate
the impact of mental illness on these links.

The proposed approach extends the idea of machine translation
(in natural language processing) to find links between brain structure
and function. Our view point is that sMRI and fMRI are different
views/measurements of the same brain, and by analogy these ’differ-
ent languages’ convey common concepts or facts in different ways.
The key ingredient of this novel approach is an “attention” module
that learns an alignment between features of two different modali-
ties similar to the deep machine translation model [1]. In our con-
text, alignments are associations/links between time varying fMRI
and static sMRI features. Because (sMRI) gives us an unordered set
of features, we modify the model’s attention mechanism to investi-
gate brain structure-functional relationships thus moving it closer to
caption generation models [12]. We also examine the learned align-
ments for group differences between healthy controls (HCs) and pa-
tients with SZ, as well as their relationships with cognitive scores.

Our method advances the state of the art in two distinct ways.
First, to the best of our knowledge, this is the first study of deep
multimodal learning in neuroimaging. Second, existing multimodal
approaches consider functional aspect of imaging data in a static
manner (but see [13]), while functional dynamics may convey im-
portant neuronal mechanisms of psychosis [14]. In contrast, our fu-
sion approach combines sMRI features and dynamic functional con-
nectivity features for finding variations across presumably hidden
associations between brain structure and function.

2. METHODS AND DATA

We work with sMRI and fMRI data collected from 154 healthy con-
trols (110 males, 44 females; mean age 37) and 144 schizophrenic
patients (110 males, 34 females; mean age 38) at rest during eye
closed condition at seven different scanning sites [14, 15].

Structural data: T1-weighted images were normalized to MNI
space, resliced to 2×2×2 mm, and segmented into gray, white, and
CSF images [16]. Gray matter density (GMD) was analyzed with
independent component analysis (ICA) to extract features as rela-
tionships among GMD regions [17]. 50 components were estimated
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using the group ICA of fMRI (GIFT) toolbox.1 After a visual in-
spection and a stability analysis of the components, 23 were selected
for further analysis.

Functional data: The motion corrected [18] despiked, warped
to MNI atlas, and intensity normalized data were decomposed into
components using spatial group ICA (GICA) in GIFT [19]. 47
temporally coherent intrinsic connectivity networks (ICN) were se-
lected [14]. Pairwise correlation between ICN time courses were
computed yielding a correlation matrix of size 47 × 47. To cap-
ture dynamics, correlation was estimated using a sliding window
approach (see Damaraju et al. [14]) which we denote as dynamic
functional network connectivity (dFNC). A discrete sequence of
dFNC states were obtained using k-means clustering algorithm on
the dFNC matrices, with a setting of k = 5 using the elbow criterion
(see all of them in Figure 2).

2.1. Translation-based multimodal fusion model

Machine translation models that produce sentences in one language
from another are common in the natural language processing disci-
pline. Two languages convey a common concept or a fact in dif-
ferent ways with their own constructs, thus providing two views on
the same underlying entity. We consider sMRI and fMRI as two
different views of the same brain, and adopt a machine translation
approach for the task of learning correspondences between these
modalities.

We exploit the idea of attention mechanism proposed by Bah-
danau et al. [1] to learn alignment (linkage) between dFNC states
and brain structural components. However, unlike the sequence to
sequence matching that attention solves in language translation, we
match an unordered set of sMRI component loadings to temporally
ordered dFNC states. To tackle this difference, we propose a modi-
fication to the attention network in our translation model. Figure 1A
depicts different parts of our translation model in the context of neu-
roimaging

As shown in Figure 1A, two main parts of our translation-based
fusion model are: (1) sequence predictor and (2) attention network.
Input is an unordered set of structural component loadings of a sub-
ject, x = {x1, . . . , xj , . . . xJ}, and the output is a temporally or-
dered dFNC state sequence, y = {y1, . . . , yi, . . . yT }, of the same
subject. The information predictive of a sequence y may spread
throughout the structural components expressed by coefficients x,
and it can be selectively retrieved by jointly training sequence pre-
dictor and attention network on a multimodal data.

Sequence predictor: The sequence predictor is a probabilistic
model that predicts one dFNC state of a sequence at each time step,
where we define each conditional probability as

p (yi|y1, . . . , yi−1,x) = h (si, ci) , (1)

where si is the current hidden state of a unidirectional recurrent layer
and ci is the current selective focus over structural components (con-
text). The probability model of Eq. (1) embodies a fusion implicitly
through conditioning on previous output history (from one modal-
ity) and the input (from the other modality). The time index i indi-
cates dynamic property of one of data modalities. Right hand side
of Eq. (1) captures the aspect of deep learning, i.e., the predictor
works with latent representations of input and output as opposed to
the direct input-output, which are learned from the data.

Eq. (1) is modeled by a feedforward neural network (NN)—a
single hidden layer with a softmax output—stacked on top of a re-
current layer. At each time point, the recurrent layer computes the

1http://http://mialab.mrn.org/software/gift/

current hidden state si which is a function of the past state, previous
output from the feedforward NN, and the current context, i.e.,

si = g (si−1, yi−1, ci) . (2)

We use gated recurrent unit (GRU) [21, 22] to find a smooth trajec-
tory in the latent representational space. Each output dFNC state yi
indicates one of the centroids of five clusters. Since the centroids are
47 × 47 matrices occupying a rather low dimensional subspace, we
reduce the dimension to 4, i.e., yi ∈ R4, using principal component
analysis (PCA). The current context ci is described below.

Attention network is the most important part for our goal as
it enables learning association(s) between functional dynamics and
structural features. Just before i-th dFNC state is predicted, the at-
tention network computes an alignment score (indicating strength
of association) between the structural component xj and dFNC state
yi. This score is based on recurrent state si−1 and is evaluated for all
structural components, i.e., ∀j ∈ {1, 2, . . . , J}∀i. For the attention
module we use NN:

ei = V> tanh
(
Wssi−1 +W>

x x
)

(3)

αij =
exp(eij)∑J
j=1 exp(eij)

, for j = 1, 2, . . . , J (4)

V,Ws and Wx are the parameters of the NN, and ei is a length J
vector containing unnormalized alignments. The normalized align-
ments are computed according to Eq. (4) and are interpreted proba-
bilistically. The learned alignments modulate the structural compo-
nents to obtain a context vector ci at i-th time step as

ci = αi � x (5)

where � indicates element wise multiplication. In other words, the
context vector serves as the currently focused structural components
with their soft alignments. In effect, each alignment αij reflects
the importance of structural component xj with respect to previous
hidden state si−1 in deciding next state si and generating dFNC state
yi by the sequence predictor. Brain structure-function relationship is
encoded in the alignments of their states, αij , for i-th dFNC state
and j-th structural components.

The sequence predictor and the attention network are jointly
trained using a gradient based optimization algorithm called RM-
Sprop [23] optimizing the negative log-likelihood based cost func-
tion,

− log(p(y|x))− λ
∑

α2
ij . (6)

In order to avoid the overfitting problem, we useL2 regularization of
alignments and a 50% dropout [20] in the hidden layers of the NNs
(see Fig. 1A), while excluding dropout in the recurrent layer and in-
puts. Using a hold-out dataset, the number of hidden neurons in both
feedforward NNs and in the recurrent layer is set to 50; the learning
rate and the coefficient of L2 norm to 0.01 and 0.5, respectively.

3. RESULTS

Alignments between dFNC states and structural components

Alignment scores for individual states are shown in Fig. 1C. In ef-
fect, each dFNC state has alignment scores across all 23 structural
components and they sum to 1.00 (Eq. (4)). If equal focus or atten-
tion was given to every structural component, the alignment score
would be 1/23 = 0.043. Besides, the alignment scores vary across
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Fig. 1. A translation model for learning alignment between functional dFNC states and structural components. (A) Model structure. The
attention network module is a feed forward network (input: 23, hidden: 50, output: 23) with a 50% dropout [20] in the hidden layer. The
sequence predictor module has a recurrent layer (consisting of 50 gated recurrent units) and a feedforward network (input: {50+23 = 73},
hidden: 50, output: 5) with a 50% dropout in the hidden layer. The recurrent layer uses the dFNC correlation matrix as an embedding in the
real vector space for the dFNC states. (B) Group differences in some paired alignments. The significances (FDR corrected) of Kolmogorov-
Smirnov tests are provided as asterisks (’****’: p < 10−4). (C) Mean alignments across all subjects (both HC and SZ) thresholded at
0.057.

subjects for each dFNC state - structural component pair. There-
fore, we show the mean alignments (thresholded at 0.056) across all
subjects including HC and SZ in Fig. 1(A). States 1 and 2 where
ICNs were sparsely connected had some similarity in their align-
ments, for example, both showed stronger associations with puta-
men and insula. On the other hand, state 3, 4, and 5 showed their
associations with some of the structural components in the saliency
and default mode networks (precuneus, PCC, and anterior cingulate
cortex (ACC)), and in temporal cortex, in addition to the insula. In
other words, the alignments for states 3,4, and 5 were more spread
out than those for states 1 and 2, in addition to their regional differ-
ences across the brain.

The group differences in alignments are shown in Fig. 2. It
should be mentioned here that no discriminating information of HC
and SZ was supplied to the algorithm during training. To measure
the significance, Kolomogorov-Smirnov tests were performed and
the p-values are provided in each plot of Fig. 1(B). Mean alignments
of states 1 and 2 with putamen were significantly higher for SZ pa-
tients. Healthy controls showed more alignments than SZ in the case
of states 3 (not shown) and 5 with middle temporal gyri which is
involved in various cognitive tasks. States 2, 3, and 5 also showed
higher associations with precuneus and PCC for the healthy controls.
Interestingly, most of the states exhibited significantly higher align-
ments with insula for the patients with SZ.

Relationships between alignments and meta-data

We examined the learned alignment scores to investigate their group-
wise relationship with a cognitive score (attention/vigilance). This
domain score was taken from van Erp et al. [24], which was based
on the d-prime across blocks continuous performance test (CPT) z-
scores. It measures how well a respondent discriminates between
non-targets from targets. Figure 3 shows a linear regression fit be-
tween attention and vigilance score and alignments along with the

p-values of significance test. Also shown are the relationships when
each of the structural and functional features considered individu-
ally. The alignments of state 3 with middle temporal gyri revealed
a strong positive correlation for the HC group, and those of state 5
with ACC showed a strong negative correlation for the patients with
SZ. No such relationship, however, could be found when individual
modality of data were examined. This clearly shows a benefit of tak-
ing multimodal approach because individual modality might capture
only partial views.

4. DISCUSSION AND CONCLUSIONS

This study has proposed the use of a novel method of multimodal fu-
sion for neuroimaging data with a particular goal of finding associa-
tions between brain structure and functional dynamics. The key idea
is that, to some extent, information about dynamic fMRI features is
spread over gray matter structural patterns, which can be selectively
extracted using state-of-the-art machine learning techniques. To this
end, we leverage the recent advancement of attention mechanism
in deep learning to find (possibly nonlinear) alignments/associations
between brain structure and function.

The dFNC patterns capture functional connectivity as a func-
tion of time. Analysis of the patterns by k-means clustering re-
sults in two major types of patterns. Among five clusters (states
in Fig. 2), states 1 and 2 account for a weaker connectivity within
the majority of ICNs and demonstrate no strong connectivity be-
tween subgroups (SC, AUD, VIS, SM, CC, DM, and CB). These
are also the states wherein the patients with SZ made significantly
more transitions than the HCs, suggesting a dysconnectivity in the
SZ [14]. Our translation-based multimodal fusion approach adds an
additional level of information revealing possible linkage of these
states (1 and 2) with some of the brain structures. In particular, these
states have stronger associations with insula and putamen. Corre-
spondingly, insula has been shown to have a strong connection with

6157



Putamen

Precuneus/PCC

ACC

Middle temporal gyri

S
ta

te
 1

S
ta

te
 2

S
ta

te
 3

S
ta

te
 4

S
ta

te
 5

Insula/Temporal

fMRI sMRI

Fig. 2. Group differences in learned alignments between fMRI and
SMRI features. A red link indicates higher mean for patients, black
denotes higher mean for HCs. Significance of group differences are
displayed as width of connections; the higher the significance, the
wider the connecting lines between dFNC sates and structural com-
ponents.

p−value (HC) = 0.164
p−value (SZ) = 0.292

−4

−2

0

2

−2 0 2
Loading coefficient

C
og

ni
tiv

e 
sc

or
e

Middle temporal

p−value (HC) = 0.212
p−value (SZ) = 0.894

−4

−2

0

2

0 10 20 30
Dwelling time

C
og

ni
tiv

e 
sc

or
e

dFNC state 3

p−value (HC) = 0.013
p−value (SZ) = 0.679

−4

−2

0

2

0.000 0.025 0.050 0.075 0.100
Alignment

C
og

ni
tiv

e 
sc

or
e

State 3 with middle temporal

p−value (HC) = 0.737
p−value (SZ) = 0.307

−4

−2

0

2

−2 0 2
Loading coefficient

C
og

ni
tiv

e 
sc

or
e

ACC

p−value (HC) = 0.359
p−value (SZ) = 0.302

−4

−2

0

2

0 10 20 30
Dwelling time

C
og

ni
tiv

e 
sc

or
e

dFNC state 5

p−value (HC) = 0.833
p−value (SZ) = 0.012

−4

−2

0

2

0.000 0.025 0.050 0.075 0.100
Alignment

C
og

ni
tiv

e 
sc

or
e

State 5 with ACC

Fig. 3. Linear regression fit for attention and vigilance score with
alignments (top panel: alignments of state 3 with middle temporal
gyri and bottom panel: alignments of state 5 with ACC). Each plot
is annotated with the significance level (p-value). Relationships with
individual modality, structure and dFNC, are also shown in the left
two plots of top and bottom panels.

aberrant activities in default mode and central executive networks
in schizophrenic patients [25]. It also shows more gray matter vol-
ume loss compared to any other brain region in the patients with
SZ. Parts of it are involved in the process of distinguishing between
stimuli exogenous and endogenous with respect to the body, which
gives it an obvious potential role in schizophrenia. Our findings of
stronger associations between states 1(2) and insula are consistent
with this finding as the states were occupied significantly longer by
the patients with SZ. On the other hand, states 3, 4, and 5 speaks
for high to moderate correlations among the several ICNs, including
regions in AUD, VIS, and SM. Interestingly, the HCs made more
transitions in these states. With regard to their associations with the
brain structures, significantly more alignments are revealed with the
GMDs in precuneus, PCC, and temporal cortex. Furthermore, com-
paring alignment distributions across structural components, states
3, 4, and 5 seem to be more evenly spread out than the states 1 and
2. This is expected because many ICNs showed stronger functional
connectivity in states 3, 4, and 5. These distinctive new findings
suggest potential advantages of our novel multimodal approach in
the psychosis research.

Besides finding associations between brain structure and func-
tional dynamics, we examined estimated alignments for their possi-
ble relationships to cognitive scores [24]. A strong positive corre-
lation between attention and vigilance score and alignment of state
3 with middle temporal gyri, for the HCs, was revealed only when
multimodal fusion was adopted. Neither of unimodal features in-
dicated such relationship. Likewise, a strong negative correlation
for the patients with SZ was found between their cognitive scores
and alignments of state 5 with ACC, while unimodal features failed
to provide such information. The positive correlation in the HCs
and negative correlation in the patients suggests distinct structure-
function mechanisms, thereby demonstrating an interplay between
deficits and dysfunction in the patients. The observed relationships
are consistent and extend previous reports on structure-function ab-
normalities in patients with SZ [6, 26].

Although it is generally believed that structure and function in
psychotic disorders are associated in complicated ways, the majority
of researchers still resort to linear models in their work. The main
reason is an expectation that information in the nonlinear signal is
weak or hard to capture. In this paper we demonstrated evidence
that, with an appropriate method, nonlinear interactions can be reli-
ably extracted and that they carry otherwise not-detectable informa-
tion that discriminates between schizophrenia and healthy controls.
The ability to capture nonlinearity, however, is not the only strengths
of the approach. Importantly, the model is able to perform data fu-
sion of dynamic (sequential) and static modalities, whereas in many
existing data fusion approaches the dynamic modality needs to be
manually compressed into a static representation in a pre-processing
step. This property of our approach allows learning from variation
in dynamics within and across subjects and results in a new discrim-
inative dimension for schizophrenia patients and controls that could
potentially enhance our understanding of the disorder. We conclude
that the deep learning based nonlinear machine translation approach
has a high potential for analysis of multimodal data thanks to its
flexibility and representational power.
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matter connectivity is associated with reduced cortical thick-
ness in the cingulate cortex in schizophrenia,” Cortex, vol. 49,
no. 3, pp. 722–729, 2013.

6159


