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ABSTRACT 
The paper presented a systematic evaluation of the weight 
sparsity regularization schemes for the deep neural networks 
applied to the whole brain resting-state functional magnetic 
resonance imaging data. The weight sparsity regularization 
was deployed between the visible and hidden layers of the 
Gaussian-Bernoulli restricted Boltzmann machine (GB-
RBM), in which the L0-norm based non-zero value ratio and 
L1-/L2-norm based Hoyer’s sparseness were used to define 
the weight sparsity. Also, the weight sparsity regularization 
schemes between the two consecutive layers (i.e. layer-
wise) and between the layer and the node in the subsequent 
layer (i.e. node-wise) were compared in terms of the 
convergence property. Finally, the reproducibility of 10 sets 
of weight features extracted from the GB-RBMs trained 
using 10 sets of random initial weights was evaluated. 
 

Index Terms—Deep neural network, Gaussian-
Bernoulli restricted Boltzmann machine, Hoyer’s 
sparseness, Human Connectome Project, weight sparsity 
 

1. INTRODUCTION 
 
The deep neural network (DNN) with an explicit sparsity 
control of weights [1-3] has recently been shown its efficacy 
(1) to enhance the classification performance and (2) to 
extract the hierarchical feature representations from the 
functional magnetic resonance imaging (fMRI) data. Using 
this method, the sparsity level of each weight matrix 
between two consecutive layers (i.e. layer-wise weight 
sparsity regularization) was explicitly controlled by the 
percentage of non-zero weights (PNZ) [1, 2]. 

This layer-wise sparsity control via the PNZ is 
advantageous due to its computational simplicity. However, 
the convergence of the PNZ-based sparsity regularization is 
potentially sensitive to the learning rates during the DNN 
training [2] due to its dependence on the threshold to define 
a non-zero value since the PNZ is scale-variant. To address 
this issue, the Hoyer’s sparseness (HSP) measure which is 
based on the ratio between the L1-/L2-norms and is scale-
invariant was adopted [4, 5]. 

The weight sparsity level can also be defined from the 
weight vector between the layer and the node in the 
subsequent layer (i.e. node-wise weight sparsity 

regularization). Fine-grained sparsity regularization would 
be achieved from the node-wise sparsity regularization by 
minimizing the variability of the sparsity levels across 
weight feature vectors within a layer (see Fig. S2-S3 in [1]). 

To investigate the aforementioned motivations, the 
Gaussian-Bernoulli restricted Boltzmann machine (GB-
RBM) [6-8] was employed in this study compared to the 
auto-encoders (AE) based on minimization of mean-squares 
error between input and reconstructed input data by learning 
hidden representations of input samples [5]. Also, the whole 
brain resting-state fMRI (rfMRI) data in the grayordinates [9, 
10] from the Human Connectome Project1 (HCP) were used 
as input samples compared to the whole brain functional 
connectivity patterns of the HCP rfMRI obtained in the 
volumetric coordinates [5]. The convergence properties of 
the GB-RBM training from (1) the HSP-based compared to 
PNZ-based weight sparsity measurement and from (2) the 
node-wise compared to layer-wise weight sparsity 
regularization were explored across several learning rates to 
train the GB-RBM. In addition, the reproducibility of the 
weight features extracted from the GB-RBM was evaluated 
using ten GB-RBM results trained with 10 sets of random 
initial weights. 
 

2. METHODS AND MATERIALS  
 
2.1. rfMRI data from Human Connectome Project  
In the HCP rfMRI data from 900 subjects release (S900), 
the rfMRI data from one subject (‘100307’) were used. A 
gradient-echo echo-planar-imaging (EPI) pulse sequence 
was applied to acquire the rfMRI data (time-of-repetition, or 
TR = 720 ms; time-of-echo, or TE = 33.1 ms; field-of-view 
= 208×180 mm2; 2 mm isotropic voxel size; 72 axial slices; 
slice thickness = 2 mm; multi-band factor = 8; 1,200 EPI 
volumes). The grayoridnates FIX-Denoised (Extended) 
rfMRI data [10] from the subject were spatially smoothed 
on the surface (for the cortices) and on the volume (for the 
sub-cortices and cerebellum) spaces with 8 mm isotropic 
Gaussian kernel using the Connectome Workbench 
command2 (i.e. ‘wb_command –cifti-smoothing’). 

                                                
1 www.humanconnectome.org 
2 http://www.humanconnectome.org/software/connectome-
workbench.html 
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2.2. Weight sparsity regularized Gaussian-Bernoulli 
restricted Boltzmann machine (GB-RBM)  
The RBM is a single layer computational model with the 
input layer (with input/visible nodes) and the hidden layer 
(with hidden nodes). There are undirected connections 
between the visible nodes and hidden nodes and there is no 
connection across the nodes in each layer. In the GB-RBM, 
the values of the visible node and hidden node are modeled 
as the Gaussian and Bernoulli distributions, respectively. 
The grayordinates rfMRI data in each time point (i.e. TR) 
were used as the values in the visible nodes of the GB-
RBM.  

The cost function of the GB-RBM was defined from the 
energy function that is inversely proportional to the log-
likelihood of the joint probability between the visible and 
hidden nodes: 

E(v,h)= (vi −bi )2
2σ i
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∑ c jhj

j
∑ −
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σ ii , j

∑      
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where E(v,h)  is the energy function, v  and h
 
are visible 

and hidden nodes, respectively, wji
 is a weight that 

connects the ith visible node and the jth hidden node, b  and 
c  are the biases of the visible and hidden nodes, 
respectively, σ i

 is the standard deviation of the Gaussian 

visible node vi . 
By applying the stochastic gradient descent method to 

the energy function in Eq. (1) with the contrast divergence-1 
approximation of the Gibbs sampling (i.e. ΔRBMW(t) ) [8] 
as well as the L1-/L2-norm regularizations (i.e. elastic net), 
the learning rule of the GB-RBM weights, W was  defined 
as follows: 
 ΔW(t)=α(t){(1−β(t))ΔRBMW(t)+β(t)sign(W(t))+γW(t)},     (2) 

where t is an epoch number, α(t)  is an overall learning rate 
(i.e. an initial learning rate was gradually reduced to 10-6 
after 200 epochs), β(t) (≥ 0) and λ  are the L1- and L2-
norm regularization parameters, respectively. The L2-norm 
regularization parameter was fixed to 10-4 to prevent an 
over-fitting during the training (i.e. ridge regression) [11] .  
 
2.3. Layer-wise weight sparsity regularization 
The β(t)  in Eq. (2) controls the degree of the L1-norm 
regularization of weights by balancing the cost function of 
the GB-RBM and the L1-norm regularization. The weight 
matrix of the GB-RBM becomes sparser when β(t)  is 
higher (and subsequently the cost function of GB-RBM is 
less stringent), whereas there is no weight sparsity 
regularization when β(t)  equals to zero (and thus this is 
equivalent to the GB-RBM training with the ridge 
regression). The β(t)  is adaptively changed based on the 
difference between the target weight sparsity level and the 
sparsity level of the current weights using the PNZ: 

Δβ(t)=µ ⋅ sign(
W(t)

0
N

−ρPNZ ),           
(3) 

where µ  is a learning rate (i.e. 10-2), N  is a total number of 
elements of the weight matrix, ρPNZ  is a PNZ-based target 
weight sparsity level (i.e. 0 to 1; low ρPNZ  indicates the high 
sparsity level and vice versa), ⋅

0
 is the L0-norm that counts 

the number of non-zero elements in the weight matrix, i.e. 
any value outside an interval ε (i.e. 10-3) from 0 (i.e. [-ε, ε]) 
was defined as non-zero value in our study. The β(t)  value 
was limited to 0.5 to prevent the potential instability caused 
by the substantial L1-norm regularization of weights. 

The PNZ is potentially sensitive to the overall learning 
rate α  in Eq. (2) due to the scale variance of the PNZ 
caused by the threshold ε. Alternatively, the HSP that is 
based on the ratio between the L1- and L2-norms of the 
weights is scale-invariant and thus the HSP can be a viable 
option to substitute the PNZ. Also, the HSP is less 
computationally demanding compared to the Gini index, in 
which these are the two most reliable measures of sparsity 
[12].  

The update term of β(t)  using the HSP was defined as 
follows:  

Δβ(t)=µ ⋅ sign(ρHSP −
N − W(t)

1
/ W(t)

2

N −1
),

           
(4) 

where ρHSP  is the HSP-based target sparsity level (i.e. 0-1; 0 
being minimum sparsity and 1 being maximum sparsity).  
 
2.4. Node-wise weight sparsity regularization  
The layer-wise regularization of the weight sparsity scheme 
in Eq. (4) can be modified into the node-wise weight 
sparsity regularization as follows:  

Δβi(t)=µ ⋅ sign(ρi ,HSP −
N − W(i ,:)(t) 1 / W(i ,:)(t) 2

N −1
),

        
(5) 

where i represents the hidden node index. 
 
2.5. The GB-RBM training 
The numbers of the input nodes and hidden nodes of the 
GB-RBM were 91,282 and 20, respectively. The GB-RBM 
was trained using Eq. (2) and Eqs. (3-5) depending on each 
of the three scenarios of the weight sparsity regularization. 
Also, the GB-RBM without weight sparsity regularization 
was trained to evaluate the efficacy of the sparsity 
regularization schemes. The hyperbolic tangent was used as 
the activation function of the hidden node. The maximum 
number of epoch was 1,000. The mini-batch size was 200 
and a momentum factor was 0.6 [13]. The MATLAB 
implementation3 of the GB-RBM algorithm was modified 
with an extension of the weight sparsity regularization 
schemes denoted in Eqs. (3-5). The graphic processing unit 
installed hardware (Intel i7-4790 3.6 GHz; 8 cores; NVIDIA 
                                                
3 github.com/rasmusbergpalm/DeepLearnToolbox 
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GeForce GTX980; 32 GB RAM; Ubuntu 15.10) and the 
MATLAB (R2015b) computing environment were used. 
 
2.5. Performance evaluation  
The convergence property of the weight sparsity 
regularization scheme and converged weight sparsity levels 
were measured using the kurtosis and Gini index across 
three learning rates (i.e. α  = 0.002, 0.001, or 0.0005). 
Uniformly distributed random weights were used to 
initialize the GB-RBM and the GB-RBM training was 
repeated 10 times using each of 10 sets of the random initial 
weights. Three target PNZ and HSP levels (i.e. ρPNZ  = 0.1, 
0.2, 0.3; ρHSP = 0.6, 0.7, 0.8) were used. The 10 sets of the 20 
trained weight feature vectors for each of the 20 hidden 
nodes of the GB-RBM were subject to the quantitative 
evaluation using the ICASSO [14]. Finally, the 
reproducibility of the extracted weight feature vectors from 
each of the layer-wise PNZ-/HSP-based and node-wise 
HSP-based weight regularization schemes was evaluated 
using the cluster quality index [14]. 
 

3. RESULTS 
 

Fig. 1 shows the learning curves of the layer-wise weight 
sparsity regularization schemes. Overall, the weight sparsity 
levels (bold lines) reached to the target levels and mean-
squared errors (MSEs; dotted lines) were well converged. 
The weight sparsity levels from the HSP-based 
measurement were stable across the epochs, whereas these 
from the PNZ-based measurement showed moderate 
fluctuations while converging to the target sparsity levels 
particularly when the MSE reached to the minimum values.   

 
Fig. 1. Learning curves of (1) the weight sparsity level (bold line) 
and (2) MSE (dotted lines).  
 

Fig. 2 shows the kurtosis values of the weights during 
the GB-RBM training. Overall, the kurtosis values were 
stabilized in approximately 400 epochs. The HSP-based 
sparsity measurement showed the robust kurtosis values 
across the learning rates. However, when the target PNZ-
based sparsity levels were 0.1 and 0.2, the converged 
kurtosis values from the high learning rate (i.e. α  = 0.002) 

were greater than these from the two reduced learning rates 
(i.e. 0.001 or 0.0005). 

 
Fig. 2. Learning curves of the kurtosis value. Average (bold line) 
and standard deviation (shaded area) of kurtosis obtained from the 
GB-RBM trained using the 10 randomly initialized weights for 
each of the three learning rates were shown. 
 

     Fig. 3 shows the learning curves of the Gini indices of 
the learned weights. Overall, the Gini indices were 
stabilized after 500 epochs. The Gini indices from the HSP-
based regularization appear to be more robust across the 
learning rates compared to these from the PNZ-based 
regularization. 

 
Fig. 3. Learning curves of the Gini index. Average (bold line) and 
standard deviation (shaded areas) of the Gini indices obtained from 
the GB-RBM trained using the 10 randomly initialized weights for 
each of the three learning rates were shown. 
 

 
Fig. 4. The cluster quality indices (mean and standard deviation) 
obtained from the ICASSO using 10 sets of 20 weight feature 
vectors trained from the GB-RBM (** and * indicate uncorrected 
p-value < 0.01 and 0.05 from the two-sample t-test, respectively).  
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Fig. 4 shows the cluster quality indices estimated from 
the ICASSO using the 10 sets of the 20 trained GB-RBM 
weight vectors. Overall, the cluster quality indices were 
enhanced when the sparsity level increases. Notably, by 
employing the HSP-based measurement, the cluster quality 
indices were greater from the node-wise regularization than 
the layer-wise and no-sparsity regularizations. 

Fig. 5 shows the representative weight features learned 
from the HSP-based node-wise regularization scheme. The 
trained weight features (cluster #02) representing the default 
mode networks (DMN) showed the greatest cluster quality 
index (i.e. 0.92) across the 10 sets of the GB-RBM training. 
The language-related networks (#04), motor networks (#06), 
lateral parietal network (#08), and cerebellum areas (#10 
and #17) showed the higher cluster quality indices than the 
remaining clusters. 

 
Fig. 5. The representative weight features trained from the HSP-
based node-wise regularization (target sparsity level = 0.8 and α = 
0.0005; the sign of each weight vector was changed if an element 
with maximum magnitude is negative; the 95th percentile value or 
above were visualized using the Connectome Workbench v1.2.34). 
 

4. DISCUSSION 
4.1. Summary  
In this study, we evaluated the results from the GB-RBM 
training with an explicit weight sparsity regularization 
scheme depending on (1) the PNZ-based or HSP-based 
sparsity level and (2) the layer-wise or node-wise weight 
sparsity regularization scheme. The reproducibility of the 
extracted weight features from these regularization schemes 
was quantitatively compared using the cluster quality index 
estimated from the ICASSO [14]. The target sparsity levels 
were well converged from both the PNZ-based and HSP-
based weight sparsity definition although the sparsity 
measurement from the PNZ appears to be sensitive to a 
learning rate scale. Also, the HSP-based node-wise weight 
sparsity regularization showed the enhanced reproducibility 
of the extracted weight features compared to the HSP-based 
layer-wise weight sparsity regularizations. 

Interestingly, the obtained weight features represented 
the popular spatial patterns of the rfMRI networks such as 
the DMN and motor networks. The visual networks (data 
not shown) showed a high cluster quality index (i.e. 0.78), 
however the number of features of the corresponding cluster 
was 14 greater than the number of GB-RBM training (i.e. 

                                                
4 http://www.humanconnectome.org/software/connectome-
workbench.html 

10) and thus this warrants a future investigation. It is also 
worth to investigate that eight out of 20 features represented 
the cerebellum networks in the slightly shifted areas and the 
weight features in the sub-cortical areas were not obtained 
in this study. This may be related to the fact that the 8mm 
spatial smoothing applied to the cerebellum and sub-cortical 
areas was performed in the volumetric space.  

 
4.2 Future works 
The GB-RBM was employed in this study compared to the 
AE in the previous study [5] and the weight features of the 
GB-RBM seem to show the greater reproducibility than 
these from the AEs  (data not shown). A future study is 
warranted to systematically compare the weight features 
obtained from the GB-RBM to alternative unsupervised 
learning methods such as independent component analysis 
[15] and AEs. The application of the greedy layer-wise 
trained GB-RBM (i.e. deep belief network, or DBN) with 
the weight sparsity regularization scheme to the rfMRI data 
would constitute an interesting future study as the DBN 
could extract the hierarchically organized feature 
representations of the task-based fMRI data [2]. 
Consequently, the reproducibility of the hierarchically 
organized weight feature representations of the rfMRI data 
deserves future investigation. Furthermore, the weight 
sparsity regularization can be optimized from the 
constrained optimization scheme via the Lagrangian 
multiplier [16] rather than the grid search from the candidate 
weight sparsity levels in the nested cross-validation 
framework [1, 2]. It would be straightforward to apply the 
presented findings to our earlier study presenting the 
efficacy of a DNN with the PNZ based regularization 
scheme toward the classification of the schizophrenia and 
healthy subjects [1]. 
 

5. CONCULSION 
In this study, the performance of the weight sparsity 
regularization schemes was evaluated across various 
scenarios depending on whether the weight sparsity was 
calculated from the PNZ or HSP measurement during the 
GB-RBM training using the whole brain rfMRI volumes as 
input. The convergence property to reach to a target sparsity 
level and consistency of the converged sparsity level seems 
to be superior from the HSP-based measurement than the 
PNZ-based measurement. Also, the node-wise weight 
sparsity regularization scheme presented the enhanced 
reproducibility for each of the trained weight features than 
the layer-wise weight sparsity and sparsity regularization-
free schemes. It would be straightforward to extend our 
reported methods/findings to the stacked-GB-RBM training 
and to extract the hierarchically organized features from the 
rfMRI data. As a result, DNN applications with the weight 
sparsity regularization scheme to classify and/or to predict 
neurological/neuropsychiatric disorders may be feasible by 
circumventing the curse-of-dimensionality issue [1, 2, 16].  
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