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ABSTRACT

Intuitive spoken dialogues are a prerequisite for human-robot inter-
action. In many practical situations, robots must be able to identify
and focus on sources of interest in the presence of interfering speak-
ers. Techniques such as spatial filtering and blind source separa-
tion are therefore often used, but rely on accurate knowledge of the
source location. In practice, sound emitted in enclosed environments
is subject to reverberation and noise. Hence, sound source localiza-
tion must be robust to both diffuse noise due to late reverberation, as
well as spurious detections due to early reflections. For improved
robustness against reverberation, this paper proposes a novel ap-
proach for sound source tracking that constructively exploits the spa-
tial diversity of a microphone array installed in a moving robot. In
previous work, we developed speaker localization approaches using
expectation-maximization (EM) approaches and using Bayesian ap-
proaches. In this paper we propose to combine the EM and Bayesian
approach in one framework for improved robustness against rever-
beration and noise.

Index Terms— Bayesian estimation; Expectation-Maximization;
Particle filter; Acoustic Signal Processing; Sound Source Tracking.

1. INTRODUCTION

The ability of robots to engage in verbal dialogues is a fundamental
prerequisite for intuitive interaction between humans and machines.
To focus on desired sound sources subject to interference and noise,
autonomous systems, such as robots, rely on beamforming [1] in the
direction of salient acoustic events. The source directions are esti-
mated using sound source localization techniques [2]. However, in
realistic environments, reverberation causes localization errors and
spurious detections due to dominant early reflections [3].

For improved robustness of source localization, spatial diversity
of microphones installed on moving platforms can be exploited con-
structively in order to infer the source-sensor distance and to dis-
ambiguate the direction of impinging sound waves due to the direct
path of a source [4, 5, 6]. In previous work [7], we compared the
two paradigms of maximum likelihood (ML) and Maximum a pos-
teriori (MAP) estimation for sound source localization from moving
microphones in reverberant environments.

The ML estimator was implemented using an iterative expectation-
maximization (EM) approach that maximized the likelihood of mea-
sured pair-wise relative phase ratios (PRPs) in order to estimate the
position of the source within a pre-defined, discrete grid over the
room region. The EM algorithm provides a natural approach to fit
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data from multi-modal distributions. The results in [7] therefore
demonstrated that the iterative EM approach robustly estimates the
source positions from a batch of data by clustering direct-path PRPs
from noisy PRPs due to reverberation. For real-time processing,
the iterative EM in [7] can be extended to recursive EM (REM)
algorithms [8] for online processing. Nevertheless, the performance
of the EM approach is limited by the resolution of the discrete grid
of source hypotheses. Consequently, for applications where high
localization resolution is required, the use of a discrete grid can be
computationally wasteful. Furthermore, due to the lack of temporal
models within the ML framework, parameters are estimated based
on the current data, independent of the source trajectories.

The MAP estimator in [7] was implemented using a particle fil-
ter, propagating in time a cloud of random variates, or particles, of
source positions using prior information of temporal models of the
source dynamics. Information is inferred from the PRPs by evalu-
ating the likelihood of each particle. Resampling ensures that only
stochastically relevant particles are retained. The particle filter there-
fore estimates smoothed trajectories of source positions across time.
Furthermore, the particle filter propagates only a meaningful cloud
of randomly sampled source positions, therefore avoiding the need
for discretized grids. Nevertheless, particle filters rely on the abstrac-
tion of the raw data to low-level features such as PRPs. Although the
speech signals contain potentially crucial information encapsulated
in the received speech signals, a transformation that maps the source
positions to the acoustic transfer function between the source and
sensors is unknown in practice. As a consequence, given the parti-
cles and raw data, the likelihood cannot be evaluated directly.

Nevertheless, it was shown in [9] that the EM can be used to
evaluate and maximize the raw data likelihood. Thus, the particle
filter would benefit from the likelihood function evaluated within the
EM framework. Simultaneously, the EM algorithm would benefit
from the adapative grid of source positions provided by the particles.

Therefore, in this paper, we propose a novel approach that com-
bines the EM algorithm within the Bayesian framework, for mutu-
ally improved performance. We show that the particle filter can be
used to estimate and propagate an adaptive grid of source positions.
The particle positions are used within the EM algorithm to estimate
and maximize the likelihood of reverberant data, which is subse-
quently used in the particle filter to assign weights to the particles.
Room simulations for realistic conditions demonstrate high accuracy
in source localization using a single, moving pair of microphones.

This paper is structured as follows: Section 2 introduces the sig-
nal models. The proposed method is derived in Section 3. Perfor-
mance results using room simulations are presented in Section 4, and
conclusions are drawn in Section 5.
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2. SYSTEM MODEL

2.1. Source motion model

The state, s(t) ,
[
x(t), y(t), ẋ(t), ẏ(t)

]T , of a source at time step
t, and located at position (x(t), y(t)) with velocity (ẋ(t), ẏ(t)), can
be modelled over time using a Langevin model [10], i.e.,

s(t) = F(t)s(t− 1) + u(t), u(t) ∼ N (04×1, Q(t)) (1)

where the dynamics, F(t), and process noise covariance, Q(t), are

F(t) ,

[
I2 a∆tI2

02×2 aI2

]
and Q(t) ,

[
b2 ∆2

t I2 02×2

02×2 b2I2

]
(2)

where ∆t is the time step, a , e−β∆t and b , v̄
√

1− a2, and
where β is the rate constant and v̄ is the steady-state velocity. There-
fore, the transition density of the source states, p (s(t) | s(t− 1)),
is given by probability transformation of (1) as:

p (s(t) | s(t− 1)) = N
(
s(t)

∣∣F(t)s(t− 1), Q(t)
)
. (3)

2.2. Robot motion model

The microphone array used in this paper consists of one microphone
pair with Cartesian positions, pm(t) ,

[
xm(t), ym(t)

]T for m =
1, 2 and with an inter-sensor distance of 0.5 m. The microphone
pair moves at constant speed along a straight line within the room.
In this paper, the positions of the microphones are assumed known.
For unknown robot positions, the source localization approach pro-
posed in this paper can be integrated in the acoustic Simultaneous
Localization and Mapping (SLAM) approach in [4, 5, 6].

2.3. Signal model

The short-time Fourier transform (STFT) of the clean speech signal
emitted by a single source at time t and frequency k is given by
y(t, k). The source signal is convolved with the Acoustic Impulse
Response (AIR) of the reverberant room, such the STFT, zm(t, k),
at each of the two microphones is expressed as:

zm(t, k) = hm(t, k) y(t, k), (4)

where hm(t, k) is the Acoustic Transfer Function (ATF) between the
source and microphonem ∈ 1, 2 at time t and frequency k. The ATF
can be separated into the Relative Direct Transfer Function (RDTF),
h

(d)
m (t, k), and the transfer function due to early reflections and late

reverberation, h(r)
m , such that (4) is equivalent to,

zm(t, k) = h(d)
m (t, k) y(t, k) + nm(t, k), (5)

where the non-direct component, nm(t, k), captures the effects of
early reflections and late reverberation, i.e.,

nm(t, k) , h(r)
m y(t, k). (6)

Furthermore, h(d)
m (t, k) in (5) denotes the RDTF between sensor m

and the source, modeled as a function of the source angle, ϑm(t),
relative to the array of microphones via the plane-wave approxima-
tion [11],

h(d)
m (t, k) = exp

{
2π  k dm cosϑm(t)

K Ts c

}
, (7)

where c is the speed of sound,K is the number of frequency bins, Ts
is the sampling period, and dm is the distance between microphone
m and the reference microphone.

The microphone signals, z(t, k) ,
[
z1(t, k), z2(t, k)

]T , can be
synonymously expressed in vector form as

z(t, k) = h(d)(t, k) y(t, k) + n(t, k), (8)

where h(d)(t, k) ,
[
h

(d)
1 (t, k), h

(d)
2 (t, k)

]T
with noise term

n(t, k) ,
[
n1(t, k), n2(t, k)

]T . Assuming n(t, k) is white Gaus-
sian, the likelihood of the reverberant signals in (8) is given by

p (z(t, k) | s(t)) = N c (z(t, k)
∣∣0M×1, Φ(t, k)

)
, (9)

where N c denotes the complex Gaussian density, and 0M×1 is the
M × 1 zero vector. The covariance in (9) is given by the Power
Spectral Density (PSD), Φ(t, k):

Φ(t, k) = h(d)(t, k) [h(d)(t, k)]H φy(t, k) + Φr(t, k), (10)

where the direct-path PSD is denoted as φy(t, k) , E
[
|y(t, k)|2

]
,

and Φr(t, k) , E
[
n(t, k) n(t, k)H

]
is the reverberation PSD ma-

trix, which can be modelled in terms of its spatial incoherence ma-
trix, Γ(t, k), and reverberation level, φR(t, k), as:

Φr(t, k) = Γ(t, k)φR(t, k). (11)

Assuming reverberation can be modelled as a spatially homoge-
nous, spherically isotropic sound field [12], element (i, j) for each
{i, j} ∈ {1, 2} of the matrix Γ(t, k) can be modelled as

Γi,j(t, k) = sinc
(

2πk di,j
K Ts c

)
+ ε δ(i− j), {i, j} = 1, 2 (12)

where ε is the diagonal loading factor, and di,j is the Euclidean dis-
tance between microphone i and j.

3. METHODOLOGY

3.1. Sequential Importance Sampling

The MAP estimate of the source position is obtained from the pos-
terior Probability Density Function (pdf), p (s(t) | Zt), via

ŝMAP(t) = arg max
s(t)

p (s(t) | Z1:t, φy(t, k), φR(t, k)) , (13)

where Z1:t =
[
ZT1 , . . . ,Z

T
t

]T with Zt ,
[
z(t, 1)T , . . . , z(t,K)T

]T .
The posterior density is given via Bayes’s theorem as

p (s(t) | Zt, φy(t, k), φR(t, k))

=
p (Zt | θt) p (s(t) | s(t− 1))∫

p (Zt | θt) p (s(t) | s(t− 1)) ds(t)
,

(14)

where θt ,
[
sT (t), φy(t, k), φR(t, k)

]T , the likelihood is denoted
as p (Zt | θt) and p (s(t) | s(t− 1)) is the prior. However, due to
the denominator in (14), the posterior pdf is analytically intractable.

Nevertheless, the posterior pdf can be approximated by sam-
pling from a proposal density, π

(
s(t) | ŝ(j)(t− 1),Zt

)
, that in-

cludes the support of p (s(t) | Z1:t). Hence,

p (s(t) | Z1:t, φy(t, k), φR(t, k)) ≈
J∑
j=1

w̃(j)(t) δŝ(j)(t)(s(t)),

(15)
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where w̃(j)(t) , w(j)(t)/
∑J
j=1 w

(j)(t) are the normalized impor-
tance weights, and the particles, ŝ(j)(t), are drawn from

ŝ(j)(t) ∼ π
(

s(t) | ŝ(j)(t− 1),Zt
)
. (16)

Using prior importance sampling from (3), i.e.,

π
(

s(t) | ŝ(j)(t− 1),Zt
)

= p
(

s(t) | ŝ(j)(t− 1)
)
, (17)

the unnormalized importance weights, w(j)(t) are given by [13]:

w(j)(t) = w(j)(t− 1) p
(

Zt | θ(j)
t

)
. (18)

Assuming Independent and Identically Distributed (IID) frequency
bins, the likelihood of the reverberant measurements corresponding
to particle, ŝ(j)(t), can be obtained from (9) as:

p
(

Zt | θ(j)
t

)
=

K∏
k=1

p
(

z(t, k) | θ(j)
t

)
. (19)

However, the direct-path and reverberant PSDs, φy(t, k) and
φR(t, k) are required in order to evaluate the PSD in (10). As
φy(t, k) and φR(t, k) are unknown in practice, the likelihood in
(19) and hence the particle weights in (18) cannot be evaluated
directly from the particles, {ŝ(j)(t)}Jj=1.

Nevertheless, considering the cloud of particles as an adaptive
grid of source position hypotheses, the ML framework can be used
to estimate p (Zt | θt) for the importance weights in (18).

3.2. EM algorithm

As the likelihood, p (Zt | θt), is generally high-dimensional and
multi-modal, it is often difficult to maximize in practice. Rather
than maximizing the likelihood directly, the EM algorithm in [9]
maximizes the joint density of the observed data and a set of latent,
unobserved and discrete variables, Xt,

p (Zt | θt) =
p (Zt,Xt | θt)
p (Xt | θt)

, (20)

with Xt ,
[
x(t, 1, ϑ), . . . , x(t,K, ϑ)

]T and where x(t, k, ϑ) is an
IID indicator that (t, k) is solely associated with a source in the di-
rection of ϑ = γ(t)− tan−1 (xr(t)/yr(t)), where (xr(t), yr(t)) is
the source position relative to the sensor with orientation γ(t). More-
over, the joint posterior, p (Zt,Xt | θt), can be expressed using (9)
as [9]:

p (Zt,Xt | θt) = (21)∏
k

J∑
j=1

x(t, k, ϑj)N c
(
z(t, k)

∣∣02×1, Φ(j)(t, k)
)
.

In [9] the indicator is evaluated over a predetermined, discrete grid
of source directions in [0, 2π]. This paper proposes to use instead
the directions of the particles, denoted by {ϑj}Jj=1, as an adaptive
grid of P = J source directions.

The log-likelihood corresponding to (20) is given by:

ln p (Zt | θt) = ln p (Zt,Xt | θt)− ln p (Xt | θt) (22)

where p (Zt,Xt | θt) is the joint pdf of the complete data and
p (Xt | θt) is marginal density of the indicator.

The pdf of the complete data can be written as [14]:

ln p (Zt,Xt | θt) = Q(θt,θ
(`−1)
t ) (23)

−
∑
k,j

p
(
x(t, k, ϑj) | Zt,θ(`−1)

t

)
ln p

(
x(t, k, ϑj) | Zt,θ(`−1)

t

)
,

where

Q(θt,θ
(`−1)
t )

,
∑
k,j

p
(
x(t, k, ϑj) | Zt,θ(`−1)

t

)
ln p (Zt, x(t, k, ϑj) | θt),

(24)

where ψ(j) is the probability to have a source in the jth direction.
The EM algorithm therefore iteratively estimates the maximum like-
lihood in a two-stage process. Using (21), the E-step [9] evaluates:

µ(`−1)(t, k, j) , E
[
x(t, k, ϑj) | z(t, k),θ(`−1)

]
=

ψ
(`−1)
j N c

(
z(t, k)

∣∣02×1, Φj(t, k)
)

J∑
j=1

ψ
(`−1)
j N c

(
z(t, k)

∣∣02×1, Φj(t, k)
) (25)

where Φj(t, k) = h(r)(t, k) [h(r)(t, k)]H φS,j(t, k) +
Γ(t, k)φR,j(t, k).

In the M-step, p (Zt, x(t, k, ϑj) | θt) is maximized. According
to (24), this maximization is equivalent to separately maximizing
lnψm and the log-likelihood. By constrained maximization:

ψ
(`)
j =

1

K

K∑
k=1

µ(`−1)(t, k, j). (26)

Furthermore, maximization of the log-likelihood reduces to [15],

φR,j(t, k) = zH(t, k)
[
I2 − bj hHj (t, k)

]
Γ−1(t, k) z(t, k)

(27a)

φS,j(t, k) = bHj

[
z(t, k) zH(t, k)− φR,j(t, k) Γ(t, k)

]
bj

(27b)

where bj is the Minimum Variance Distortionless Response beam-
former in the direction ϑj , i.e.,

bj =
Γ−1(t, k) hj(t, k)

hHj (t, k) Γ−1(t, k) hj(t, k)
. (28)

Therefore, instead of using a deterministic grid of source po-
sitions, the positions sampled within the particle filter are used to
maximize the source directions in (25)-(27). Simultaneously, the
probabilities, ψ(L)

j , are used to weight the particles in lieu of (18):

w(j)(t) = w(j)(t− 1)ψ
(L)
j N c (z(t, k)

∣∣02×1, Φj(t, k)
)
. (29)

4. RESULTS

The trajectory of a moving pair of microphones is simulated over
10 s along a straight line in a 6 × 6 × 2.5 m3 room with the ini-
tial and final position of the origin of the pair at (1.5, 1, 1.5) m and
(5, 2, 1.5) m respectively. The two microphones are offset by 0.15 m
in x-direction to the left and right of the origin respectively. The
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(a) t = 0 s (b) t = 0.05 s

(c) t = 3.05 s (d) t = 4.925 s

Fig. 1: Distribution of particles across time.

trajectory of a moving source is simulated using (1) with β = 2,
v̄ = 1 m/s. Using the room impulse response (RIR) generator
in [16] the RIR for each source-sensor geometry is simulated for
T60 = 500 ms at sampling frequency fs = 8 kHz. The resulting
RIRs are convolved with a 10 s anechoic speech signal from a female
speaker constructed from the TIMIT database. The STFT of the sig-
nal is evaluated using a rectangular window for each microphone for
a frame length of 50 ms. The proposed approach is evaluated for
∆t = 0.375 s using 1000 particles. The initial particles are drawn
from a uniform distribution with a minimum distance of 1.5 m to
each of the walls and at least 1 m from the microphone origin.

Figure 1 shows the distribution of particles at four time steps.
For each time step, the point estimate of the source position is ex-
tracted from the particles as the peak of the weighted Kernel Den-
sity Estimate (KDE). The KDE is shown in Figure 1 as the contour
plot, highlighting concentrations of particles with high weight. It
can be seen that the peak of the KDE converges to the true source
angle. Triangulation of the source position is highly dependent on
the source-sensor geometry, resulting in estimation errors of under
0.4 m at t = 3.05, 4.925 s, and an average position error across all
time steps of 0.805 m. The main reason for the estimation error is

the unmeasured source-sensor distance. The scenario corresponds
to source-sensor distances between [0.688, 4.464] m. However, the
source position is triangulated from a pair of microphones with only
0.3 m inter-microphone distance and relatively small displacement
of approximately 0.15 m between time steps. Nevertheless, high ac-
curacy is achieved in the estimated source angle, with an average of
0.319 deg accuracy.

5. CONCLUSION

We proposed a novel approach to sound source tracking in reverber-
ant environments using a single moving pair of microphones. A par-
ticle filter is used to propagate hypotheses of source positions across
time. At each time step, the EM algorithm uses the particles to es-
timate and maximize the likelihood of reverberant measurements.
The resulting probabilities are used in the particle filters as impor-
tance weights. Results for 500 ms reverberation time using two mi-
crophones separated by 0.3 m demonstrated estimation accuracy of
0.805 m in position and 0.319 deg in the source direction of arrival.
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