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ABSTRACT
Speaker localization and counting in real-life conditions re-
mains a challenging task. The computational burden, trans-
mission usage and synchronization issues pose several limi-
tations. Moreover, the physical characteristics of real speak-
ers in terms of directivity pattern and orientation, as well as
restrictions in the microphone array positioning, which com-
monly have to be placed close to walls, deteriorate the local-
ization performance. In this paper, we propose a localization
and counting method that accounts for the adjacent wall re-
flections and evaluate it using a dataset of real recorded sig-
nals of actual speakers that we collected. Our dataset is pub-
licly available to foster further investigation towards localiza-
tion in real-life scenarios.

Index Terms— location estimation, source counting, re-
flections, real recordings, wireless acoustic sensor networks

1. INTRODUCTION

Speaker localization in a wireless acoustic sensor network
(WASN) where each sensor consists of a microphone array
has been an emerging field of interest. Usually, a central-
ized scheme is adopted, where a dedicated node (the “fu-
sion center”) performs the localization based on information
transmitted from the arrays. Among the variety of localiza-
tion approaches, different methods make different assump-
tions about the acoustic environment and the signal model and
come with specific advantages and limitations. However, few
of them have been tested in real-life conditions.

The practical, real-life deployment of a WASN for local-
ization poses many new challenges. Some of them arise from
computational complexity, bandwidth usage, and synchro-
nization issues [1]: the computational complexity becomes
an important issue for real-time implementations, while the
wireless nature of the sensors limits the amount of informa-
tion that can be transmitted. Also, as each array has its own
clock, the signals across the arrays are not synchronized.
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Another important issue arises from limitations on the po-
sitioning of the microphone arrays in the room, which in real-
life need to be placed close to walls in order not to pose re-
strictions on the activities of the speakers inside the room.
The presence of such reflecting surfaces so close to the mi-
crophone arrays is generally known to have an adverse effect
on the performance of the array, which can degrade the lo-
calization performance of the entire system. Also, the char-
acteristics of real speakers in terms of their directivity pat-
tern, spatial volume, and orientation are far more complicated
than omnidirectional point sources which are usually used for
simulations. Lastly, in realistic scenarios with multiple active
speakers, it is reasonable to assume that their number is also
unknown and may vary arbitrarily in time, which constitutes
the estimation of the number of sources also important.

A well-known class of localization methods is based on
constructing a likelihood map of candidate source locations,
usually with the use of the steered response power with phase
transform (SRP-PHAT) [2], and estimating the speaker loca-
tions from the peaks of the likelihood map [3]. Although the
computational burden of SRP-PHAT methods has been opti-
mized (e.g., [4–6]), the transmitted information is still high,
since to compute the SRP each node must transmit its entire
Generalized Cross-Correlation function [2]. SRP-PHAT has
also been used for multiple sources (e.g., [7]), however due
to the many local extrema of the SRP space, the performance
deteriorates with an increasing number of speakers.

Other approaches rely on time-differences of arrival
(TDOA) or direction of arrival (DOA) estimates from the
sensors. The location can be found as the intersection of
DOA lines [8–11], or the intersection of hyperbolas defined
by the estimated TDOAs [12, 13]. Such methods, maintain
low transmission requirements—as only the TDOAs/DOAs
need to be transmitted—but can become quite complicated
for multiple sources: the number of estimated TDOAs/DOAs
in each time instant can vary across the sensors due to missed
detections or overestimation of the number of sources and
an association procedure is needed to find the TDOAs/DOAs
combinations that correspond to the same source [14]. Fi-
nally, other methods utilize statistical approaches to model
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spatial features extracted from the arrays. An Expectation-
Maximization algorithm for speaker localization is presented
in [15], while distributed approaches are discussed in [16,17].

In this paper, we present the implementation of a source
counting and location estimation system in the challenging
conditions of a real environment. Our previous work of [18] is
employed at the fusion center to perform the source counting
and localization, based on clustering of per-frequency loca-
tion estimates. It offers reduced transmission requirements,
while it does not require perfect synchronization, facilitat-
ing its use in real-life applications. We incorporate our sys-
tem with our recently proposed method of [19] to explicitly
take into account the reflections that occur when the arrays
are close to walls. To investigate the challenges occurred in
real-life conditions, we collected and present a dataset1 of real
recordings in a typical office room. We evaluate the perfor-
mance of our system in this challenging dataset, which is pub-
licly available in order to assist the research community move
a step towards accurate localization in real-life scenarios.

2. “REFLECTION-AWARE” DOA ESTIMATION

Following [19], the DOA estimation accuracy for a circular
array of M sensors and radius R, placed in front of a wall can
be significantly improved by designing a propagation model
which is aware of the earliest reflection introduced by the ad-
jacent wall. Let us first review the typical propagation model,
expressing the relative sound pressure at the mth microphone
as a function of frequency ω and incident angle θ as

am(ω, θ) = ejkR cos(φm−θ). (1)

Here, k = ω/c is the wavenumber, c is the speed of sound
and φm is the angle of the mth sensor which similar to θ, is
defined with respect to the center of the circular disk. This
typical propagation model accounts for the direct path of the
sound only and ignores any distinct reflections that may occur.

A so-called half-space version of the propagation model
associated to the same circular array can be designed with the
model for the mth microphone defined as [19]

âm(ω, θ) = ejkR cos(φm−θ)ejkε cos θ

+hejkR cos(φm−π+θ)e−jkε cos θ,
(2)

where ε is the distance of the array center from the adjacent
wall, θ is the incident angle defined so that θ = 0◦ is normal to
the wall (Fig. 1), and h ∈ [0, 1] is the so-called Image Source
Relative Gain (ISRG) which encodes the reflective properties
of the wall. Assuming h to be real and constant with fre-
quency is an affordable simplification, although in practice
the wall reflectivity would be more accurately represented by
a complex and frequency-varying ISRG [19]. Letting now

1Our dataset is publicly available at https://github.com/
spl-icsforth/WASN-Recordings-OfficeRoom.

Fig. 1. Recording setup used for evaluation.

â(ω, θ) = [â1(ω, θ), · · · , âM (ω, θ)]T be the vector concate-
nating all the M terms from Eq. (2), the half-space steering
vector is derived as

a(ω, θ) = â(ω, θ)/ ‖â(ω, θ)‖2 , (3)

where ‖·‖2 denotes the Euclidean norm.
Using any of the two propagation models, different ap-

proaches to DOA estimation can be employed. Here, we uti-
lize a Minimum Variance Distortionless Response (MVDR)
beamformer [20]. Performed in a time-frequency (TF) basis,
with τ denoting the time-frame index, we find the local DOA
θ̂(τ, ω) where the MVDR beamformer response is maximized
by searching across the entire range of potential directions
from 0 to 360 degrees. The DOA estimates, θ̂(τ, ω) up to a
maximum cutoff frequency ωc from each array are then trans-
mitted to the fusion center.

3. LOCATION ESTIMATION AND COUNTING

Assuming a WASN with N arrays at known locations the fu-
sion center estimates the locations of an unknown number of
K sources which are present in the environment.

3.1. Per-frequency location estimation

The estimated DOAs from each array at a given frequency
are used to infer a location estimate for that frequency. To
do so, we utilize our single-source grid-based (GB) location
estimator described in [11, 21]. The method constructs a grid
over the area where localization is performed and divides it
into a set of grid points. The location for each frequency is
estimated as the grid point whose DOAs most closely match
the estimated DOAs from the arrays at that frequency.

Based on the geometry of the space and the array loca-
tions, each array has a specific range of “allowable” DOAs,
i.e, DOAs that can result in locations inside the localization
area defined by the grid. Thus, before we apply our single-
source GB method we check that the DOA of each array is
in its “allowable” range. If not, we don’t estimate a location
and move to the DOAs for the next frequency. Finally, for
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Fig. 2. Counting success rates for our dataset, using our
“reflection-aware” and the typical model for DOA estimation.

each time-frame we create a block of per-frequency location
estimates that contains the estimates of the current frame and
B previous frames (history length).

3.2. Outlier rejection

To remove erroneous location estimates that occurred from
the previous step, we construct the two-dimensional his-
togram of location estimates and smooth it by applying an
averaging filter with a rectangular window of length hX and
hY in the x− and y− dimension, respectively. Finally, we re-
move the per-frequency location estimates whose cardinality
in the histogram is less than q times the maximum cardinality,
where q ∈ [0, 1] is a pre-defined threshold. The underlying
assumption behind this scheme is that erroneous estimates
are expected to be of low cardinality in the histogram.

3.3. Final location estimation and counting

The remaining per-frequency location estimates are expected
to formK clusters around theK sources’ locations. The final
location estimation and counting is performed by clustering
the per-frequency location estimates using the bayesian K-
means algorithm [22], where the number of clusters is also
unknown. For more details the reader is referred to [18].

4. DATASET OF REAL RECORDINGS

The dataset contains real recordings of speech sources in a
typical office room of dimensions Lx = 6.33 and Ly =
4.2 meters with reverberation time of approximately equal to
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Fig. 3. Localization error for our dataset, using our
“reflection-aware” and the typical model for DOA estimation.

400 ms. The recording setup is depicted in Fig. 1. The record-
ings were made at predefined locations (1–6 in Fig. 1), by two
male speakers. The first speaker (M01) was recorded at loca-
tions 1–3, and the second one (M02) at locations 4–6. The
speakers were asked to stand in the predefined locations with
an orientation towards the center of the room, without further
advising them about where to look at or how loud to speak.

We used two uniform circular microphones arrays. The
array locations were measured to be (2.68, 0.086, 1.20) me-
ters for the first array (A01) and (6.248, 2, 1.20) meters for
the second array (A02). Both arrays were placed very close
to walls: A01 is 8.6 cm and A02 is 8.2 cm away from the
corresponding walls. Both arrays consisted of 8 Shure SM95
omnidirectional microphones and a radius of 5 cm. They op-
erated individually (i.e., they were connected to different host
PCs). Utterances for each speaker and each location were
segmented from the original recordings and synchronized by
eye-inspection. The signals were recorded at 48 kHz sam-
pling rate.

5. RESULTS AND DISCUSSION

We used the recordings (downsampled at 12 kHz) of our
dataset to evaluate our method in real-life conditions. For
processing, we used an FFT of 512 samples length, with 50%
overlap windowed with a square root hanning window and
ωc = 4 kHz. For the per-frequency location estimates we
used 1 second history length (B = 46 frames). The parame-
ters for outlier rejection were set to hX = hY = 20 cm and
q = 0.25, as these parameters were found to perform best in
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Fig. 4. Location estimates (the blue clouds) for the real recordings of one [(a)–(c)] and two [(d)–(l)] speakers (the red X’s).

most of the cases. The “allowable” range of DOAs was set to
[0◦, 70◦] ∪ [290◦, 360◦) for A01 and [0◦, 45◦] ∪ [315◦, 360◦)
for A02. Finally, ISRG was set to h = 0.9 and all other
parameters were set according to [18, 19]. To consider sce-
narios of two sources, we artificially added the microphone
array signals at different locations and from different speak-
ers. This resulted in 9 different cases, which represent all
combinations of mixing speaker M01 at locations 1–3 with
speaker M02 at locations 4–6. The energy of the speakers
was not equalized to better model real-life conditions where
energies will not be equal.

Fig. 2 depicts the counting success rate as the percent-
age of time-frames where the correct number of sources was
found for the single-source and two-source case. The corre-
sponding Root Mean Squared Error (RMSE) with error bars
representing one standard deviation is shown in Fig. 3. For
comparison, we include the results when the sensors use the
same DOA estimator but with the typical steering vector (i.e,
not accounting for reflections). It is evident that when the
sensors utilize our “reflection-aware” DOA estimator, we can
achieve better performance: while the counting success rate
is not always improved, the location estimation error is signif-
icantly reduced for all tested locations, especially in the two
sources case.

Generally, our system operates in a functional range of
values for these challenging scenarios, both in terms of count-
ing and localization performance. It is also important to note
how the performance varies in different locations. A large er-
ror is observed at location 1 in the single source case, which
can be explained by the fact that this location is much further
from the arrays (especially array A02). A performance degra-
dation especially in terms of counting success rate is evident
also in some cases of the two sources scenario (e.g, location
pairs 2 & 4, 3 & 5), which can be attributed to the small dis-
tance between the sources, as well as to the small angular

separation of the sources with respect to one (or both) the ar-
rays. Such location pairs could benefit from the deployment
of more microphone arrays. These results also highlight the
importance of evaluation across the entire localization cell, a
direction towards which little effort has been made so far.

Fig. 4 shows the location estimates using our “reflection-
aware” DOA estimation, for 12 out of 15 tested source loca-
tions (due to space limitations the three single-source cases
with the smallest error have been omitted). The blue dots
show the cloud of estimates over the entire duration of the sig-
nals for the time-frames where the correct number of speakers
was found, revealing again a quite accurate localization. Fi-
nally, given that the locations and orientations of the arrays
were not finely calibrated and had unintended offsets of a few
centimetres and degrees, the conditions were far from ideal,
making our results quite encouraging.

6. CONCLUSIONS

In this paper, we considered the location estimation and
counting problem in a real WASN and real-life conditions.
We extended our previously proposed method of [18] by
incorporating a model that takes into account the early reflec-
tions for DOA estimation [19], resulting in improved local-
ization and counting when the microphone arrays are close to
walls, a setup which is quite ordinary in real-life situations.
We evaluated our approach using real recorded signals that
reflect the challenges that occur in real-life scenarios, such as
the directivity pattern, spatial volume, and orientation of real
speakers. Our dataset of real recordings is publicly available
to allow the evaluation of localization approaches in real-life
conditions. In the future, we plan to extend our dataset with
more speakers, source locations, and microphone arrays.
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