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ABSTRACT 
 

This paper deals with sound source localization and number 

estimation in indoor environments using a circular 

microphone array. Multiple sound source localization is 

achieved by performing single source localization at each 

selected time-frequency (TF) point of received signals after 

short-time Fourier transform. A TF point selection method 

is proposed to reduce the computational time, which 

depends on a trained SVM with power and power ratio of 

TF points as its features. Nonparametric Bayesian clustering 

is applied on the obtained DOA estimates to identify the 

number of active sources. The algorithm is shown to 

outperform others through simulations. 
 

Index Terms—DOA, short time Fourier Transform 

(STFT), SVM, source number estimation, DPMM. 

 

1. INTRODUCTION 
 

As an important research area in audio signal processing, 

sound source localization receives ample attention. It finds 

applications in teleconferencing [1], guiding a robot and in 

the next generation of hearing aids. As accurate localization 

algorithms emerge, indoor sound source localization may 

become an integral part in smart home applications. 

Techniques such as Generalized Cross-Correlation 

Phase Transform (GCC-PHAT) [2] and Steered Response 

Power-Phase Transform (SRP-PHAT) [3], which use 

multiple microphone pairs, are relatively simple. They are 

designed for single source localization and the estimated 

results may be erroneous in the multi-source case. Another 

challenge for this type of methods is reverberation in indoor 

environments. 

Subspace approaches, such as MUSIC and its wideband 

variations [4], are capable of estimating directions of 

arrivals (DOAs) of multiple sources. But it can only tackle 

the overdetermined case, i.e., the microphone number is

  

more than the number of sound sources. Assuming sources 
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are W-disjoint orthogonal, Jourjine et al. [5] proposed 

asolution for the underdetermined case, i.e., a blind 

separation of N sources from two mixtures. 

Karbasi et al. proposed a uniform circular microphone 

array based sound source localization algorithm [6] which 

has an advantage over a linear array in overcoming the 

ambiguities. They assumed that the sources are sufficiently 

sparse, i.e., one source is dominant over others in certain 

time-frequency zones, and proposed the circular integrated 

cross spectrum (CICS)  method to estimate DOA for a given 

frequency value.  

In reverberant conditions, Pavlidi et al. imposed relaxed 

sparsity constraint on sound sources [1], i.e., in each time-

frequency component, more than one source may be active. 

They set a threshold on the cross-correlation of a pair of 

microphone signals for detecting the single-source time-

frequency (TF) zones. Peak locations of a DOA histogram 

indicate the DOAs of the multiple active sound sources.  

Based on the characteristics of speech signals, after 

selecting the TF points which represent the direct sound 

waves of individual sources, Sun et al. [7] improved the 

localization accuracy. 

In practice, source localization is more difficult when 

the source number is unknown. Source number counting is 

needed. Pavlidi et al. used matching pursuit [1] and 

compared to peak search, minimum description length 

(MDL), linear predictive coding methods, but it has a 

relatively low detection rate. Algorithms in [8,9] using an 

infinite Gaussian mixture model can get a relative accurate 

number estimate, which outperforms the parametric 

approaches [10]. 

Existing DOAs estimation methods rely on prefixed and 

intuitive parameters for single source TF points selection. 

The main contribution of this paper is that we improve the 

method proposed in [7] and use pattern classification to 

select proper TF points, which not only significantly reduces 

the computational time, but also improves the accuracy of 

the subsequent nonparametric Bayesian clustering based 

source number counting and DOA estimation.  

 

2. SOUND SOURCE LOCALIZATION 
 

2.1 Uniform Circular Microphone Array Model 
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The classic uniform circular microphone array model [7] is 

shown in Fig. 1. There are M microphones placed in a circle 

with radius r. Adjacent microphones have angular distance α 

which satisfies α=2π/M. N sound sources are far around the 

microphone array. Sensor spacing is small enough to avoid 

the spatial aliasing problem.  
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Fig.1 Geometry of a uniform circular microphone array and sound 

sources. 

 

Si is the sound source with DOA θi. In a reverberant 

environment, microphone m receives the following mixture 

signal, 
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Here,    (  )  is the room impulse response (RIR) from 

source n to microphone m, {            } are the time 

delays of the significant signal paths, and     is the length 

of the RIR. Let        {  }, which is the time delay of 

the direct path between source n and microphone m. 

 

2.2 STFT and Sparse Analysis 

 

For broadband signals, STFT is used to transform them to 

the time-frequency (TF) domain. STFT of the received 

signal for microphone m is as follows, 

  (   )  ∑   ( )  (   )    (   )  

 

   

       

(2) 

where k is the time frame index and f is the frequency. Each 

microphone receives a mixture signal from all the sources. 

In the TF domain, we can utilize the sparsity of each TF 

point to detect the dominant source signal.  

 

2.3 DOA Estimation 

 

The circular integrated cross spectrum (CICS) approach [6] 

is proposed to locate a sound source by producing DOA  for 

a certain frequency and frame. The calculated DOA is 

considered to contribute the most to this TF point. CICS is 

defined as  
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  is the true direction of signal,   is the radial frequency. 

For a TF point,   which maximizes     
( )

 will be the 

estimated DOA. 

Since DOA estimates of TF points may not always be 

accordance with true source directions in reverberant 

environments, Pavlidi et al. used the concept of dominant 

zone to restrict the TF point selection, and emphasized that 

only TF points whose cross-correlation over a pair of 

microphones is greater than a certain threshold can be used 

for DOA estimation.  

Utilizing the power ratio of two adjacent frames and the 

continuity in frequency, Sun et al. [7] effectively extracted 

the sparse TF points based on some prespecified thresholds. 

These points correspond to the direct path of a single source, 

and are used to further improve the precision of DOA 

estimation. 

Choosing appropriate threshold values has a significant 

effect on the localization performance and it is not 

straightforward. Next, we use a pattern classification based 

approach for TF point selection. 

 

2.4 SVM based TF Point Selection 

 

To determine if a TF point is sparse can be considered as a 

binary classification problem. The power ratio of adjacent 

frames and the power of the previous frame are important 

features, which are used to train a SVM classifier. To some 

extent, this method improves the accuracy of TF point 

selection. The diagram of the algorithm is shown in Fig. 2. 
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Fig.2 Diagram of proposed algorithm. 
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2.4.1. SVM Training 

After STFT, preprocessing is conducted by choosing the TF 

points with top 5% power ratio with respect to their previous 

frames. Among the chosen TF points, the ones whose 

previous frame power is greater than 0.05 are eliminated. 

The CICS approach is then used to estimate DOAs from the 

selected TF points. If the DOA error is less than 5o, the TF 

point is labeled as 1, otherwise as 0. Finally, a SVM 

classifier is trained with the labeled TF points, using power 

ratio and previous frame power as its features. 

 

2.4.2. SVM Classification and DOA Estimation 

Similar to training, preprocessing is conducted to reduce the 

number of TF points of interest. The SVM is used to classify 

these TF points and only those classified as 1 are kept. In 

order to further improve the accuracy of DOA estimation, 

only those points that form a vertical pattern are ultimately 

selected [7]. Finally, the CICS approach is used and a DOA 

histogram is formed. 
 

3. SOURCE NUMBER ESTIMATION 
 

Nonparametric Bayesian methods rely on data to determine 

the complexity of a model [12]. The basic idea here is to use 

a Bayesian unsupervised learning technique to cluster the 

data [16]. 

A Dirichlet process (DP) is a distribution over 

distributions. Dirichlet process mixture models (DPMM) 

allow adapting the number of active clusters as we feed 

more data over time. 

Let xi be a data point and zi be the discrete cluster label 

of xi, where i = 1, 2, …, n. For each xi, the Chinese 

restaurant process (CRP) can be used to generate the 

corresponding cluster label zi [13],         ( )  In the CRP, 

the parameter α controls the total number of clusters 

generated. The data points xi of cluster k are assumed to 

follow a Gaussian distribution,       (     ) , where    

and    are the mean and covariance of cluster k. The cluster 

model parameters    and    are drawn from a Dirichlet 

process,       (    ). Note that the base distribution G0 

acts as a prior over the model parameters    and      
Given a dataset, the cluster assignment is performed by 

posterior inference [14]. Let x1:n be the complete dataset, z-i 

the set of cluster assignments except the one of the 

ith observation, x-i the complete dataset excluding the 

ith observation, ck,-i the total number of observations 

assigned to cluster k excluding the ith observation 

while       and       are the mean and covariance matrix of 

cluster k excluding the ith observation, respectively. The 

probability of xi in cluster k, given the dataset, all the 

hyperparameters α and λ of DP and G0 is given below: 

 (                 ) 
  (          ) (                 )    (7) 
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4. SIMULATION RESULTS 
 

4.1 Simulation Setting 

 

The Image method [11] is used in our simulations to 

generate RIRs imitating indoor circumstances. A visualized 

instance of microphones and sound sources positions is 

shown in Fig. 3, where blue circle represents a circular array 

and red triangles are sound sources. Other parameters are 

listed in Table I. 
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Source 2 (1, 2)

0 4
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Fig. 3 Layout of sound sources and the microphone array. 

 
TABLE I Simulation setting 

Parameters value 

Room dimension 5m ×4m × 3m 

Speech length 2s 

Sampling rate 16kHz 

Microphone array center (2, 2, 3) 

Microphone number 9 

Inter-microphone distance 0.025m 

STFT frame length 320 

STFT frame shift 160 

Reverberation time RT60 0.3s 

 

4.2 DOA Estimation 

 

In the experiments, we use 2-second sections of the mixture 

of two different speech signals to train SVM with Gaussian 

Radial Basis Function kernel and sigma of 1. Then use 2-

second sound signal mixture for classification. When source 

positions are set at 45
o
 and 180

o
 respectively, the result is 

shown in Fig. 4(a). While using only prefixed thresholds, 

the DOA histogram is shown in Fig. 4(b).  
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(a)                                              (b) 

Fig. 4 (a) DOA histogram using only prefixed thresholds method. 

 (b) DOA histogram using SVM based method. 

 

The proposed method reduces the amount of 

computation by selecting much fewer TF points. Excluding 

preprocessing, the computational time is shown in Table II, 

compared to the method of using only prefixed thresholds. 
 

TABLE II Computational time (in second) 

Section no. Proposed method 
Method using only 

prefixed thresholds 

1 3.63 23.52 

2 4.59 21.89 

3 2.82 20.49 

4 5.95 27.22 

5 5.65 25.31 

6 6.71 26.23 

7 4.84 24.80 

8 2.47 20.44 

 

4.3 Sound Source Number Estimation 

 

Here, we simulate three sources, which are placed at 45, 90 

and 180 degrees respectively. The histogram of DOA 

estimates from the selected TF points is shown in Fig. 5(a). 

To improve clustering performance, we remove those DOA 

estimates whose cardinality is less than 2 in the histogram. 

The clustering result using DPMM is shown in Fig. 5(b)
1
, 

which gives the correct source number. The number of 

clusters converges to three after 12 iterations. When two 

souces are close to each other (45
o
 and 60

o
), it is generally 

harder to separate (see Fig. 6(a)). For comparison, the MDL 

[7] based souce number counting method outputs three 

clusters while the DPMM approach provides the correct 

cluster number (Figs. 6(b)). This demonstrates that DPMM 

is more effective in separating close sources, and the correct 

source number can help improve source localization 

accuracy.  

 

                                                 
1 Note that for better visualization, in Fig. 5(b) and Fig. 6(b), the x-

value of each point is the DOA estimate and the y-value follows a 

standard normal distribution with mean the corresponding x-value. 

  
Fig. 5 (a) DOA histogram of three sources (45o, 90o and 180o); 

 

  
Fig. 5 (b) DPMM clustering result. 

 
 

  
 Fig. 6 (a) DOA histogram of two sources (45o and 60o); 

 

  
Fig. 6 (b) DPMM clustering result. 

 

5. CONCLUSIONS 

 

In this paper, we use pattern classification for TF point 

selection, which helps achieve better localization 

performance. This approach is feasible for real-time 

implementation. Besides, we use the nonparametric 

Bayesian clustering method to obtain an accurate source 

number, even when two sources are close to each other. In 

future work, we will conduct more experiments in both 

simulations and real environments, and compare with other 

existing methods to evaluate our proposed framework for 

indoor real-time multi-sound source localization. 
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