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ABSTRACT
Time delay estimation (TDE) plays an important role in localizing
and tracking radiating acoustic sources. Although many efforts have
been devoted to this problem in the literature, the robustness of TDE
with respect to noise and reverberation remains a great challenge for
practical systems. In this paper, we investigate the TDE problem in
acoustic single-input/multiple-output (SIMO) systems inreverber-
ant and noisy environments. We first define a Cauchy estimatorin
the frequency domain, which is robust in dealing with speechas the
SIMO system’s excitation. This robust estimator is then used to con-
struct a cost function, from which a robust multichannel frequency-
domain adaptive filter is deduced. This adaptive algorithm is subse-
quently employed to blindly identify the acoustic impulse responses
between the source and the microphones. Finally, the time difference
of arrival is determined from the identified channel responses.

Index Terms—Acoustic source localization, time delay estima-
tion, microphone arrays, multichannel frequency-domain adaptive
filter.

1. INTRODUCTION

Time delay estimation (TDE), which aims at measuring the time
difference of arrival (TDOA) based on the signals captured by an
array of sensors, plays a crucial role in hands-free speech commu-
nications for localizing and tracking radiating acoustic sources [1],
[2]. A great deal of efforts have been devoted to this problemin
the literature and many methods have been developed including the
well-known generalized cross-correlation (GCC) method [3], [4],
the blind channel identification based techniques [5]–[9],the mul-
tichannel linear prediction based approaches [10]–[12], the informa-
tion theory based algorithms [13]–[15], etc. While most of these
approaches can achieve reasonable accurate estimates in favorable
environments, the robustness of TDE remains a challenging prob-
lem. There are three major sources that affect significantlythe per-
formance of TDE: noise, reverberation, and nonstationarity and non-
whiteness of the excitation signals. To deal with the three factors and
improve the robustness of TDE in practical systems, we develop in
this paper a robust multichannel approach to TDE in acousticsingle-
input/multiple-output (SIMO) systems. First, we use the Cauchy es-
timator to define a frequency-domain cost function, which issubse-
quently used to deduce an adaptive multichannel algorithm to blindly
identify the acoustic SIMO system. This adaptive algorithmis subse-
quently employed to blindly identify the acoustic impulse responses
between the source and the microphones. Finally, TDOA is deter-
mined from the identified channel responses.

This work was supported in part by the NSFC (Grant Nos. 61571376, 61401379) and
the NSFC “Distinguished Young Scientists Fund” (Grant No. 61425005), also supported
in part by the Open Foundation of the Key Laboratory of ModernAcoustics of Nanjing
University (Grant No. 1302).

2. ROBUST TDE VIA FREQUENCY-DOMAIN BLIND
SYSTEM IDENTIFICATION

2.1. Robust Adaptive Blind Multichannel Identification

Assume that an acoustic SIMO system is composed of one acoustic
source andM microphones. Usually, this multichannel system can
be blindly identified based on the well-known cross relationthat the
output of any one channel convolved with the impulse response of
another channel is equal to the output of that other channel convolved
with the impulse response of this channel if the additive noise is ne-
glected [16], [17]. With a system ofM channels and in the presence
of additive noise or/and modeling errors, one can write the following
error signals [18], [19]:

eij(n) = x
T
i (n)ĥj(n)− x

T
j (n)ĥi(n), (1)

wherei, j = 1, 2, . . . ,M , i 6= j, eij(n) is thea priori error signal
between theith andjth channels,xi is the observation signal vec-
tor of the ith channel of lengthL, andĥi(n) is an estimate of the
impulse response vectorhi of theith channel of lengthL at timen.
The error signal can be used to define a conditional cost function via
a square function or a robust cost function based on an M-estimator
in the time domain [19].

For typical acoustic channels, the magnitude of their transfer
functions is often flat. However, the amplitude spectra of the ex-
citation signals, which are speech most of the time, typically have
an impulse-like structure [20]. In the course of adaptive iteration,
the impulse responseshi(n) andhj(n) are often estimated crudely,
which implies that[hi(n) ∗ ĥj(n) − hj(n) ∗ ĥi(n)] (∗ denotes lin-
ear convolution) is such far away from zero that it emphasizes the
presence of the impulsive spectrum of the excitation signals(n) in
the amplitude spectrum of the error signaleij(n). As a result, the
frequency-domain cost function based on the square error isdomi-
nated by the large peaks in the spectra of the excitation speech sig-
nals, which seriously affects the accuracy and robustness of chan-
nel identification. In this paper, we consider to transform the error
signal eij(n) into the frequency domain denoted aseij(n) to de-
velop an adaptive frequency-domain algorithm for the improvement
of channel identification with speech excitations. Then, wepropose
to define a cost function based on an M-estimator:

Jρ(m) =
M−1∑

i=1

M∑

j=i+1

mL+L−1∑

n=mL

ρ
[
|eij(n)|

]
, (2)

where
[
eij(mL) eij(mL+ 1) · · · eij(mL+ L− 1)

]T
= eij(m)

= G
01
L×2L

[
Dxi

(m)G10
2L×Lĥj(m)−Dxj

(m)G10
2L×Lĥi(m)

]
,

(3)
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Fig. 1. Comparison between the square function and the Cauchy
estimator (withc = 5.0) in the frequency domain.

Dxi
(m) = diag{F2L×2Lxi,2L(m)}, (4)

xi,2L(m) = [xi(mL− L) xi(mL− L+ 1)

· · · xi(mL+ L− 1)]T , (5)

G
01
L×2L = FL×L

[
0L×L IL×L

]
F

−1

2L×2L, (6)

G
10
2L×L = F2L×2L

[
IL×L 0L×L

]T
F

−1

L×L, (7)

ĥi(m) = FL×Lĥi(m), (8)

FL×L andF−1

L×L are, respectively, the Fourier and inverse Fourier
matrices of sizeL×L, 0L×L is the null matrix of sizeL×L, IL×L

is the identity matrix of sizeL×L, diag[·] denotes a diagonal matrix
with diagonal entries from the indicated vector,m is the block index,
andρ[·] is a robust frequency-domain M-estimator. In this work, we
use the Cauchy estimator [21], which is written as

ρ
[
|eij(n)|

]
=

c2

2
log

[
1 +

( |eij(n)|
c

)2
]
, (9)

where the parameterc is a positive constant. The comparison be-
tween the Cauchy estimator (withc = 5.0) and the square function
is illustrated in Fig. 1. As can be seen, if thea priori errors are
small, the two cost functions are of similar change rate, indicating
that both of them can yield similar adaption performance. Incom-
parison, the Cauchy estimator deemphasizes the large errors caused
by large spectral peaks of speech. This property of the Cauchy es-
timator can help improve the performance of the frequency-domain
adaptive filter with speech excitation. Note that one may useother
types of M-estimators, such as the Huber estimator [22]. Theadvan-
tage of the Cauchy estimator is that it is continuously differentiable.
So, it is mathematically easier to derive rigorous robust adaptive fil-
ters.

In this work, we use the iterative Newton’s method to derive the
adaptive algorithm that minimizes the cost functionJρ(m) [23]. To
do so, we need to calculate the gradient ofJρ(m) with respect to
ĥ

∗

k(m) (where the superscript∗ denotes the complex conjugate) and
the corresponding Hessian matrix.

First, the gradient ofJρ(m) with respect tôh
∗

k(m) is deduced
as follows:

∇Jρ(m) = 2
∂Jρ(m)

∂ĥ
∗

k(m)
= 2

M−1∑

i=1

M∑

j=i+1

mL+L−1∑

n=mL

∂ρ
[
|eij(n)|

]

∂ĥ
∗

k(m)

=
M∑

i=1

mL+L−1∑

n=mL

G
10
L×2LD

∗
xi
(m)G01

2L×L

× un−mL+1ρ
′ [|eik(n)|] exp{ arg[eik(n)]}

=

M∑

i=1

G
10
L×2LD

∗
xi
(m)G01

2L×Lϕ [eik(m)] , (10)

whereui (i = 1, 2, . . . , L) is theith column of the identity matrix
IL×L, ρ′(·) is the first-order derivative ofρ(·),  =

√
−1 is the

imaginary unit,

G
10
L×2L = FL×L

[
IL×L 0L×L

]
F

−1

2L×2L, (11)

G
01
2L×L = F2L×2L

[
0L×L IL×L

]T
F

−1

L×L, (12)

ϕ [eik(m)] =




ρ′ [|eik(mL)|] exp{ arg[eik(mL)]}
ρ′ [|eik(mL+ 1)|] exp{ arg[eik(mL+ 1)]}

...
ρ′ [|eik(mL+ L− 1)|] exp{ arg[eik(mL+ L− 1)]}




.

(13)

The Hessian matrix is then derived as follows:

Sk(m) = 2
∂

∂ĥ
∗

k(m)
[∇Jρ(m)]H

= 2
∂

∂ĥ
∗

k(m)

{
M∑

i=1,i6=k

ϕ
H [eik(m)]G01

L×2LDxi
(m)G10

2L×L

}

= 2
M∑

i=1,i6=k

∂ϕH [eik(m)]

∂ĥ
∗

k(m)
G

01
L×2LDxi

(m)G10
2L×L. (14)

It can be checked that

∂

∂ĥ
∗

k(m)

{
ρ′ [|eik(n)|] exp{ arg[eik(n)]}

}∗

=
∂
{
ρ′ [|eik(n)|] exp{− arg[eik(n)]}

}

∂e∗ik(n)
· ∂e

∗
ik(n)

∂ĥ
∗

k(m)

=

{
ρ′′ [|eik(n)|]

∂|eik(n)|
∂e∗ik(n)

exp{− arg[eik(n)]}

+ ρ′ [|eik(n)|]
∂ exp{− arg[eik(n)]}

∂e∗ik(n)

}
∂e∗ik(n)

∂ĥ
∗

k(m)

=
1

2
η
ik
(n)

∂e∗ik(n)

∂ĥ
∗

k(m)
, (15)

whereρ′′(·) is the second-order derivative ofρ(·),

η
ik
(n) = ρ′′ [|eik(n)|] +

ρ′ [|eik(n)|]
|eik(n)|

, (16)

and

∂ϕH [eik(m)]

∂ĥ
∗

k(m)
=

1

2

[
η
ik
(mL)

∂e∗ik(mL)

∂ĥ
∗

k(m)
η
ik
(mL+ 1)

× ∂e∗ik(mL+ 1)

∂ĥ
∗

k(m)
· · · η

ik
(mL+ L− 1)

× ∂e∗ik(mL+ L− 1)

∂ĥ
∗

k(m)

]

6131



=
1

2

[
η
ik
(mL)G10

L×2LD
∗
xi
(m)G01

2L×Lu1

η
ik
(mL+ 1)G10

L×2LD
∗
xi
(m)G01

2L×Lu2 · · ·

η
ik
(mL+ L− 1)G10

L×2LD
∗
xi
(m)G01

2L×LuL

]

=
1

2
G

10
L×2LD

∗
xi
(m)G01

2L×LT ik(m), (17)

where

T ik(m) =

diag
{
η
ik
(mL) η

ik
(mL+ 1) · · · η

ik
(mL+ L− 1)

}
. (18)

Substituting (17) into (14), we obtain the Hessian matrix as

Sk(m) = G
10
L×2LPk(m)G10

2L×L, (19)

where

Pk(m) =

M∑

i=1,i6=k

D
∗
xi
(m)G01

2L×LT ik(m)G01
L×2LDxi

(m). (20)

Using Newton’s method, we can write the update equations of
the channel estimates as

ĥk(m+ 1) = ĥk(m)− µS−1

k (m)∇Jρ(m),

k = 1, 2, . . . ,M, (21)

whereµ is the step size. Now, substituting (10) and (19) into (21)
and pre-multiplying both sides byG10

2L×L, we then obtain the update
equations:

G
10
2L×Lĥk(m+ 1) = G

10
2L×Lĥk(m)− µG10

2L×L

×
[
G

10
L×2LPk(m)G10

2L×L

]−1

×
M∑

i=1

G
10
L×2LD

∗
xi
(m)G01

2L×Lϕ [eik(m)] ,

k = 1, 2, . . . ,M. (22)

After some simple mathematical manipulation, we obtain thesim-
plified update equations:

ĥ
10

k (m+ 1) = ĥ
10

k (m)− µfP
−1

k (m)
M∑

i=1

D
∗
xi
(m)

× ϕ
01 [eik(m)] , k = 1, 2, . . . ,M, (23)

whereµf = µ/2 is a new step size and

ĥ
10

k (m) = G
10
2L×Lĥk(m), (24)

ϕ
01 [eik(m)] = G

01
2L×Lϕ [eik(m)] . (25)

To simplify the expression of the matrixPk(m) in (20), let us
approximate (18) with

T ik(m) = φik(m)IL×L, (26)

where

φik(m) = max
0≤l≤L−1

{
η
ik
(mL+ l)

}
. (27)

Note that

G
01
2L×LT ik(m)G01

L×2L = φik(m)G01
2L×2L

≈ 1

2
φik(m)I2L×2L, (28)

where

G
01
2L×2L = F2L×2L

[
0L×L 0L×L

0L×L IL×L

]
F

−1

2L×2L. (29)

It follows then that we can write the matrixPk(m) in (20) into a
diagonal matrix

Pk(m) =
1

2

M∑

i=1,i6=k

φik(m)D∗
xi
(m)Dxi

(m). (30)

This simplification would considerably reduce the complexity for
computing the inverse of the matrixPk(m). In implementation, a
more smoothed power spectrum matrixPk(m) can be obtained by
the widely used recursive method.

Same as in [19], [24], a spectral constraint on the channel im-
pulse responses is introduced into the above algorithm to improve its
robustness with noise and reverberation. Then, the final frequency-
domain adaptive filter algorithm is as follows:

ĥ
10

k (m+ 1) = ĥ
10

k (m)− µf∇J 01
NFM,k(m) + µfβ(m)

×∇J 10
SC,k(m), k = 1, 2, . . . ,M, (31)

where

∇J 01
NFM,k(m) = P

−1

k (m)
M∑

i=1

D
∗
xi
(m)ϕ01 [eik(m)] , (32)

∇J 10
SC,k(m) = 2ĥ

10

k (m)⊘
(
12L×1 +

∣∣∣ĥ
10

k (m)
∣∣∣
2
)
, (33)

β(m) is the Lagrange multiplier,⊘ denotes element-by-element di-
vision of two vectors, and12L×1 is a vector of length2L with all
the elements being 1.

2.2. TDE Based on the Robust Adaptive Blind Multichannel
Identification

After the channel impulse responses are adaptively estimated by the
aforementioned blind multichannel identification algorithm, we can
then determine the TDOAs by comparing the time differences of
the direct-path components between different channels. The TDOA
between two different channels can then be obtained as [1], [25]

τ̂ij = argmax
l

|ĥj,l| − argmax
l

|ĥi,l|. (34)

3. EXPERIMENTS

In this section, we study the performance of the proposed al-
gorithm in noisy and reverberant acoustic environments. For
the purpose of comparison, the performance of the phase trans-
form (PHAT) [1], normalized multichannel frequency-domain least-
mean-square (NMCFLMS) [8], robust normalized multichannel
frequency-domain least-mean-square (RNMCFLMS) [24], andro-
bust normalized multichannel frequency-domain least-mean-M-
estimate (RNMCFLMM) [26] algorithms will also be presented.

3.1. Experimental Setup

The impulses responses used in this study were made in the Vare-
choic Chamber at Bell Labs [27]. The dimension of the Chamber
is 6.7 m×6.1 m×2.9 m. For convenience, positions in the room are
designated by (x, y, z) coordinates with reference to the northwest
corner of the Chamber floor. We select three microphones fromthe
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measuring system in [27] to construct our linear microphonearray
system. The three microphones are located at (2.437, 0.500,1.400),
(3.137, 0.500, 1.400), and (3.837, 0.500, 1.400), respectively. A
sound source is placed at (0.337, 3.938, 1.600). The impulsere-
sponses of the acoustic channels between the source and micro-
phones were measured at a 48 kHz sampling rate when 89% panels
on the Chamber’s walls were open (the corresponding reverberation
time is 280 ms). Then the obtained channel impulse responsesare
downsampled to a 16 kHz sampling rate and truncated to 1024 sam-
ples. The measured impulse responses are treated as the trueimpulse
responses in our blind multichannel identification experiments.

The source signal is pre-recorded from a male and a female
speakers. The sampling rate is 16 kHz and the overall length is ap-
proximately 2 min: the former half is from the male speaker while
the latter half is from the female speaker. The multichannelsystem
outputs are computed by convolving the source signal with the cor-
responding measured channel impulse responses and noise isthen
added to the results at a specified signal-to-noise ratio (SNR) value.
The additive noise used in this work is white Gaussian noise.All the
parameters are set to be the same as those experiments in [19]. For
the proposed algorithm, the length of the adaptive filter is 1024, and
the parameterc is set to 5.0.

In the experiments, an estimate is yielded every frame with a
frame size of 64 ms (1024 samples). The total number of frames
is 1886. Two performance metrics, namely the probability of
anomalous estimates and the root mean-squared error (RMSE)of
nonanomalous estimates [10], [12], are used to evaluate theperfor-
mance of the proposed algorithm. The true time delays from the
sound source to the three microphone pairs are respectivelyτ12 = 19
samples,τ13 = 42 samples, andτ23 = 23 samples.

3.2. Results

The TDE results of the five studied algorithms are presented in Ta-
ble 1. As seen, the NMCFLMS algorithm performs better than the
PHAT algorithm. The RNMCFLMS algorithm is more robust to
moderate noise than the PHAT and NMCFLMS algorithms due to
the use of a spectral energy constraint; but it suffers from signifi-
cant performance degradation when the noise is strong. The RN-
MCFLMM algorithm almost outperforms the previous three algo-
rithms mainly thanks to the use of the Huber estimator and theal-
ternate employment of the mean-squared error (MSE) and mean-
absolute error (MAE) criteria in the time-domain Huber estimator
[19]. Among the five studied TDE algorithms, the proposed algo-
rithm obtains the best performance, especially in the environments
with low SNRs. This enhancement comes from the fact that the
global frequency-domain adaptive filter uses the frequency-domain
Cauchy estimator, which is robust to deal with the speech excitation
signals with impulsive spectra. This new algorithm can be viewed as
an improved version of the RNMCFLMS and RNMCFLMM algo-
rithms.

4. CONCLUSIONS

In this paper, we proposed a global frequency-domain adaptive filter
algorithm for TDE in acoustic SIMO systems. The Cauchy estima-
tor is used to define a frequency-domain cost function, from which
a robust frequency-domain adaptive filter is derived to blindly iden-
tify an acoustic SIMO system. This Cauchy estimator is insensitive
to the impulse-like structure of speech spectra while retains the ap-
proximate adaption ability of the square cost function if the spectra
of the excitation signals are flat. Moreover, the Cauchy estimator
is continuously differentiable as compared to the Huber estimator,
which yields a mathematically rigorous adaptive filter. Experiments

Table 1. The probability of anomalous time delay estimates and
RMSE of nonanomalous time delay estimates of the five studied
TDE algorithms under different levels of the SNR.

SNR (dB) TDE algorithms %anomalies(%) RMSE (samples)
τ̂12 τ̂13 τ̂23 τ̂12 τ̂13 τ̂23

−10

PHAT 96.2 96.8 96.0 1.3 1.2 1.3
NMCFLMS 71.5 86.3 94.1 0.9 0.9 0.9

RNMCFLMS 62.1 84.2 75.3 1.4 1.5 0.1
RNMCFLMM 16.8 66.3 81.0 1.5 0.5 0.8

Proposed 3.7 5.9 8.1 0.7 0.2 0.7

−5

PHAT 90.0 92.0 92.1 1.0 1.2 1.3
NMCFLMS 10.6 9.3 59.6 0.5 0.6 0.7

RNMCFLMS 11.1 1.4 44.3 1.0 0.5 0.9
RNMCFLMM 1.1 1.6 22.8 0.1 0.9 0.1

Proposed 1.6 1.0 1.6 0.1 0.2 0.2

0

PHAT 68.7 77.8 81.6 0.9 0.9 1.2
NMCFLMS 1.2 1.1 2.0 0.5 0.6 0.6

RNMCFLMS 0.1 1.6 0.7 0.6 1.2 1.2
RNMCFLMM 0.3 0.4 0.4 0.3 0.7 1.0

Proposed 0.2 0.6 0.7 0.3 0.3 0.1

5

PHAT 44.6 56.2 69.7 0.7 0.8 1.1
NMCFLMS 0.5 0.6 0.5 0.1 0.3 0.3

RNMCFLMS 0.0 0.1 0.1 0.0 0.5 0.6
RNMCFLMM 0.2 0.3 0.2 0.1 0.4 0.1

Proposed 0.0 0.2 0.1 0.0 0.5 0.1

10

PHAT 29.4 39.4 60.7 0.5 0.7 0.9
NMCFLMS 0.4 0.5 0.6 0.2 0.1 0.2

RNMCFLMS 0.2 0.0 0.1 0.1 0.1 0.8
RNMCFLMM 0.1 0.1 0.2 0.1 0.1 0.4

Proposed 0.0 0.0 0.0 0.0 0.2 0.1

conducted in noisy and reverberant environments validate the robust-
ness of the developed TDE approach.

5. RELATION TO PRIOR WORK

TDE has attracted a significant amount of attention in the litera-
ture [1], [2]. Many methods for TDE have been developed, includ-
ing the well-known generalized cross-correlation (GCC) method [3],
[4], the blind channel identification based approach [5]–[9], multi-
channel linear prediction algorithm [10]–[12], the information the-
ory based methods [13]–[15], etc. Among those methods, the blind
multichannel identification approach based on the NMCFLMS algo-
rithm is very attractive for single source TDE [8], [18]. Theunder-
lying core idea is that the channel impulse response from thesource
to each microphone is first blindly estimated, and the time delays are
then determined by comparing the time differences of the direct-path
components between different channels [1], [8], [18]. Thisalgo-
rithm is robust to reverberation since reverberation is well modeled
in the algorithmic formulation; but it is found sensitive tonoise. It
was extended to an RNMCFLMS method by introducing a flatness
constraint on the channel transfer functions [24], [26]; but the ro-
bustness with respect to noise is still a great challenge particularly
when SNR is low. In an early work, we developed an RNMCFLMM
algorithm [19], where a Huber estimator [22] was used to construct
a robust time-domain cost function, from which we obtain a multi-
channel frequency-domain adaptive filter to blindly identify a SIMO
system. The RNMCFLMM algorithm is more robust to both non-
Gaussian and Gaussian noise than RNMCFLMS [26]. However, its
performance suffers from degradations if the excitation signals are
speech. To improve performance in noisy and reverberant environ-
ments with speech excitation signals, we followed the good proper-
ties in the RNMCFLMS and RNMCFLMM algorithms and mean-
while adopted a Cauchy estimator to define a frequency-domain cost
function, which deemphasizes the large errors caused by large spec-
tral peaks of speech. From this new cost function, we developed
a robust adaptive multichannel algorithm to blindly identify acous-
tic SIMO systems from which a multichannel TDE algorithm is ob-
tained.
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