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ABSTRACT

Time delay estimation (TDE) plays an important role in ligal
and tracking radiating acoustic sources. Although margristhave
been devoted to this problem in the literature, the robsstoé TDE
with respect to noise and reverberation remains a gredecigal for
practical systems. In this paper, we investigate the TDBIpro in
acoustic single-input/multiple-output (SIMO) systemsraverber-
ant and noisy environments. We first define a Cauchy estinmator
the frequency domain, which is robust in dealing with spessthe
SIMO system’s excitation. This robust estimator is therdusecon-
struct a cost function, from which a robust multichannetjfrency-
domain adaptive filter is deduced. This adaptive algorithisuibse-
guently employed to blindly identify the acoustic impulssponses
between the source and the microphones. Finally, the tiffexelnce
of arrival is determined from the identified channel resgsns

Index Terms—Acoustic source localization, time delay estima-
tion, microphone arrays, multichannel frequency-domalapsive
filter.

1. INTRODUCTION

Time delay estimation (TDE), which aims at measuring theetim
difference of arrival (TDOA) based on the signals capturgdab
array of sensors, plays a crucial role in hands-free speecimu-
nications for localizing and tracking radiating acoustbeises [1],
[2]. A great deal of efforts have been devoted to this problem
the literature and many methods have been developed ingle
well-known generalized cross-correlation (GCC) methol [3],
the blind channel identification based techniques [5]-{®& mul-
tichannel linear prediction based approaches [10]-[t2]jitforma-
tion theory based algorithms [13]-[15], etc. While most loége
approaches can achieve reasonable accurate estimatemiabie
environments, the robustness of TDE remains a challengiol-p
lem. There are three major sources that affect significah#dyper-
formance of TDE: noise, reverberation, and nonstatioparitl non-
whiteness of the excitation signals. To deal with the thaetdrs and
improve the robustness of TDE in practical systems, we deviel
this paper a robust multichannel approach to TDE in acosstigle-
input/multiple-output (SIMO) systems. First, we use thei€@y es-
timator to define a frequency-domain cost function, whickubse-
guently used to deduce an adaptive multichannel algorithiotiridly
identify the acoustic SIMO system. This adaptive algoritasubse-
quently employed to blindly identify the acoustic impulssponses
between the source and the microphones. Finally, TDOA isrdet
mined from the identified channel responses.
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the NSFC “Distinguished Young Scientists Fund” (Grant Nb485005), also supported
in part by the Open Foundation of the Key Laboratory of Mod&coustics of Nanjing
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2. ROBUST TDE VIA FREQUENCY-DOMAIN BLIND
SYSTEM IDENTIFICATION

2.1. Robust Adaptive Blind Multichannel Identification

Assume that an acoustic SIMO system is composed of one &oust
source and// microphones. Usually, this multichannel system can
be blindly identified based on the well-known cross relattwat the
output of any one channel convolved with the impulse resparfis
another channel is equal to the output of that other chammsiotved
with the impulse response of this channel if the additivesed ne-
glected [16], [17]. With a system d¥/ channels and in the presence
of additive noise or/and modeling errors, one can write tiiewing
error signals [18], [19]:

T
=X;

eij(n) (n)h;(n) — x] (n)hi(n), @)

wherei,j = 1,2,..., M, i # j, e;;(n) is thea priori error signal
between theth and;jth channelsx; is the observation signal vec-
tor of theith channel of length, and ﬁi(n) is an estimate of the
impulse response vecty; of thesth channel of lengti at timen.
The error signal can be used to define a conditional costifumeta

a square function or a robust cost function based on an Miatir
in the time domain [19].

For typical acoustic channels, the magnitude of their feans
functions is often flat. However, the amplitude spectra ef ¢ix-
citation signals, which are speech most of the time, typidsdve
an impulse-like structure [20]. In the course of adaptiezation,
the impulse responsés (n) andh;(n) are often estimated crudely,
which implies thathi (n) * h; (n) — h;(n) = hi(n)] (x denotes lin-
ear convolution) is such far away from zero that it emphasthe
presence of the impulsive spectrum of the excitation sigta) in
the amplitude spectrum of the error sigraj(n). As a result, the
frequency-domain cost function based on the square erdwis-
nated by the large peaks in the spectra of the excitationchpsg-
nals, which seriously affects the accuracy and robustneshan-
nel identification. In this paper, we consider to transfoha érror
signale;;(n) into the frequency domain denoted gs(n) to de-
velop an adaptive frequency-domain algorithm for the inaproent
of channel identification with speech excitations. Then pnapose
to define a cost function based on an M-estimator:

M—-1 M mL+L-1

Tp(m) = Z Z Z p [‘Eu(n)u )

i=1 j=i+1l n=mlL

@)
where
le;;(mL) e, ;(mL+1) -+ e (mL+L—1)]" = e, (m)

= g(ilsz ['D.L1 (m)gé%xLEJ (m) - Dzj (m)gé%xLﬁb(m)] 5
3
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25 M mL+L—1
—8— Square function = Z Z G121 Dy, (m)Gorxr
20 —o6— Cauchy estimato n=mlL
X Wn—mr+1p [leg (n)[] exp{yarge;, ()]}
= 15 = Gk D (M1 e e (m)], (10)
J )
f 10} whereu; (i = 1,2,..., L) is theith column of the identity matrix

I.x5, p'(+) is the first-order derivative of(-), 7 = /-1 is the
imaginary unit,

5,

Gihor =Frxr [ Ioxr Orxz }F;leu: (11)
0 G991 = Farxor [ Onxe Ioxr ]TFZiL, (12)
& i lean(m)] =

. . . p' lleqn (mL)|] exp{yarg[e, (mL)]}
Fig. 1. Comparison between the square function and the Cauchy p e, (mL + 1)|] exp{yargle;, (mL + 1)}
estimator (withc = 5.0) in the frequency domain. .

¢ lleg (mL + L — 1)) exp{j argle,, (mL + L — 1]}

D.,(m) = diag{Farx2rXi2r(m)}, (4) (13)
xior(m) = [wi(mL — L) as(mL — L +1) The Hessian matrix is then derived as follows:
zi(mL+L-1)]", ®) 5
Gl =Fixr [ 0oz Irxz ]F;LlXQLv (6) Sk(m) = 28ﬁ;(m) V7o m)]"
G3) i = Forxor [ Ioxr Orxr ]TFZiL, ()] 9 M . o o
~ =2— erlm g 'Dzl g
h;(m) = FLthi(m)» 8) Oh,,(m) i:;?gkf lea (M) Grar (m)Garxs
Fo«r andF ., are, respectively, the Fourier and inverse Fourier M [e;(m)]
matrices of size. x L, 01 1, is the null matrix of sizel x L, Iz, =2 > _8’;*79% 20D, (M)G20 L (14)
is the identity matrix of sizd x L, diad-] denotes a diagonal matrix i=L,i#k h(m)

with diagonal entries from the indicated vector|s the block index,

andp|-] is a robust frequency-domain M-estimator. In this work, we It can be checked that

use the Cauchy estimator [21], which is written as , *
——{/ llew ()] exp{yargle, (W]} |
e ol] = 1 (I_” (ml) o Ok (m)
plle;(n)]] = = log ;
' 2 o{p llea )l expi—sargles (Nt} pes, (n)
where the parameteris a positive constant. The comparison be- g3y, (n) 552(”0
tween the Cauchy estimator (with= 5.0) and the square function P dle;(n)]
is illustrated in Fig. 1. As can be seen, if thepriori errors are = lleir (n)]] 786.*,9(@ exp{—jarg[e;,(n)]}
small, the two cost functions are of similar change rateicatthg 6_1 9e*
that both of them can yield similar adaption performancecdm- + 0 e ()] exp{—jarg[e,,( )}}} %-*k(”)
parison, the Cauchy estimator deemphasizes the large eaased Oey(n) Oh,; (m)
by large spectral peaks of speech. This property of the Gaesh 1 dety (n)
timator can help improve the performance of the frequeramywain = 3% n) o ) (15)
adaptive filter with speech excitation. Note that one mayatker b, (m)
types of M-estimators, such as the Huber estimator [22].ativan- ey } P :
tage of the Cauchy estimator is that it is continuously défgiable. wherep(-) is the second-order derivative of:),
So, it is mathematically easier to derive rigorous robusipée fil- . o e ()]
ters. n,,(n) = p" [leq (M) + B ’(“ M (16)
In this work, we use the iterative Newton’s method to derhe t -

adaptive algorithm that minimizes the cost functign(m) [23]. To  gngd
do so, we need to calculate the gradient®fm) with respect to

k(m) (where the superscriptdenotes the complex conjugate) and 390 e, (m)] _1 (mL) oe;,(mL) (mL +1)
the corresponding Hessian matrix. ohy (m) 2 |~k Ohy, (m) ik

First, the gradient of7, (m) with respect tch, (m) is deduced a 9 L1
as follows: % s ﬂm(mL +L-1)
M—-1 M mL+L-1
VJ,(m )—2‘9“7”” =25 3 5~ 2elley ]  Ogn(mL+L—1)
a i=1 j=i4+1l n=mL aﬁk(m) 8hk( )
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1 *
D) Nt (mL)glLOx 21Dz, (m)ggix rLuai

0, (ML +1)G1%0, D (m)Garyrus -

n,(mL+L— 1)G1%20 D5, (m)Gorxur

= $Gu DL (M)G8 e Tik(m), (17)
where
Tir(m) =
diag{gik(mL) n,(mL+1) - n, (mL+L-— 1}. (18)
Substituting (17) into (14), we obtain the Hessian matrix as
Si(m) = g},OmL'Pk(m)g%%xu (19)
where

M
Pr(m)= > Di,(m)G51xTik(m)Gi2rDa,(m). (20)

i=1,i%k

Using Newton’s method, we can write the update equations of

the channel estimates as

hy(m+1) = hy(m) — uS;, " (M)V.J,(m),

k=1,2...,M, (21)

wherey is the step size. Now, substituting (10) and (19) into (21)
and pre-multiplying both sides g% ., ; , we then obtain the update

equations:
Gal by (m+1) = Gy Lhy(m) — pGhl
X [glLOXQL'Pk(m)g%(L)xL]

M

x> 61 Di (m)G3L e e (m)],

i=1

—1

k=1,2,..., M. (22)

After some simple mathematical manipulation, we obtainsine-
plified update equations:

~10

Ry (m+1) = hy (m) — uPy ' (m) > "Dk (m)

x " e (m)], k=1,2,...,M, (23)
whereps = 11/2 is a new step size and
~10 ~

Ek (m) = g%%xLﬂk(m)z (24)

#" e, (m)] = Gorwrp leg (m))]. (25)

To simplify the expression of the matriR(m) in (20), let us
approximate (18) with

Tix(m) = dix(m)Irxr, (26)
where
giu(m) = max {n, (mL+1)}. (27)
Note that
2Lx L Tik(Mm)Gor = hir(m)Gor oL
~sowmboon,  (29)

where

(29)

o1 —F OLxr
g2L><2L — 2L x2L

OLxr -1
OLxr

2L x2L-
Inxr X

It follows then that we can write the matriR(m) in (20) into a
diagonal matrix

M

> Gu(m)DL, (m)De, (m).

i=1,i£k

1

Pi(m) = 3 (30)

This simplification would considerably reduce the complexor
computing the inverse of the matriR, (m). In implementation, a
more smoothed power spectrum matRx (m) can be obtained by
the widely used recursive method.

Same as in [19], [24], a spectral constraint on the channel im
pulse responses is introduced into the above algorithm podve its
robustness with noise and reverberation. Then, the fingliénecy-
domain adaptive filter algorithm is as follows:

By (m+1) = by (m) — 1V Tk (m) + peB(m)

X VJSI(QJ,k(m)’ k = 1727"'7M7 (31)

where

M
Vi k(m) = Pl (m) Y Di (m)e™ [e(m)],  (32)

i=1

Vjslgﬁk(m) = 2&;160(7”) @ (12L><1 + ‘ﬁ;lco(m)r) s (33)

B(m) is the Lagrange multiplierp denotes element-by-element di-
vision of two vectors, and .z x1 is a vector of length2 L with all
the elements being 1.

2.2. TDE Based on the Robust Adaptive Blind Multichannel
Identification

After the channel impulse responses are adaptively estihiat the
aforementioned blind multichannel identification algmit, we can
then determine the TDOAs by comparing the time differendes o
the direct-path components between different channels. TDOA
between two different channels can then be obtained as<?], [

(34)

Tij = arg max |’}:L]‘)l| — arg max \?L”\

3. EXPERIMENTS

In this section, we study the performance of the proposed al-
gorithm in noisy and reverberant acoustic environments.r Fo
the purpose of comparison, the performance of the phase-tran
form (PHAT) [1], normalized multichannel frequency-doméast-
mean-square (NMCFLMS) [8], robust normalized multichdnne
frequency-domain least-mean-square (RNMCFLMS) [24], end
bust normalized multichannel frequency-domain leastmida
estimate (RNMCFLMM) [26] algorithms will also be presented

3.1. Experimental Setup

The impulses responses used in this study were made in tiee Var
choic Chamber at Bell Labs [27]. The dimension of the Chamber
is 6.7 mx6.1 mx2.9 m. For convenience, positions in the room are
designated by, y, z) coordinates with reference to the northwest

corner of the Chamber floor. We select three microphones fhem
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measuring system in [27] to construct our linear micropharay . ) )
system. The three microphones are located at (2.437, 015000), Table 1. The probability O.f anomalous time delay estimates a’.‘d
(3.137, 0.500, 1.400), and (3.837, 0.500, 1.400), respsgti A RMSE of 'nonanomalou_s time delay estimates of the five studied
sound source is placed at (0.337, 3.938, 1.600). The impeise TDE algorithms under different levels of the SNR.

sponses of the acoustic channels between the source and- micr

. .. 9 O ies

phones were measured at a 48 kHz sampling rate whgn@mhels SNR (dB) | TDE algorithms ﬁfax un:lxg%(%%s TEMSET(liampl‘f:g,)
on the Chamber’s walls were open (the corresponding rexetibe PHAT 962 | 968 | 960 | 1.3 | 1.2 | 1.3
time is 280 ms). Then the obtained channel impulse resparses _10 R[\‘,\z\/'MchFLl'_V'MSS g%? ggg 3‘5‘% 2‘3 22 8-2
downsampled to a 16 kHz sampling rate and truncated to 1084 sa RNMCELMM T 1681 663 810 15 05 08
ples. The measured impulse responses are treated as threprise Proposed 37 | 59 | 81 | 0.7 [ 02 | 0.7
responses in our blind multichannel identification experits. PHAT 00792079211 101 12 [ 13
: . _5 NMCFLMS 106 | 9.3 | 596 | 05 | 06 | 0.7
The source signal is pre-recorded from a male and a female RNMCFLMS | 111 | 14 | 443 1.0 | 05 [ 09
speakers. The sampling rate is 16 kHz and the overall leisgaip-i RNPMCFLMdM ié i-g 21268 8-% 8-2 8-%

. . . . ropose R R . . R .
proximately 2_m|n. the former half is from the male_ speakeilevh PHAT 687 T 778 8161 09 09 12
the latter half is from the female speaker. The multichasystem 0 NMCFLMS T2 | 11 | 20 | 05 | 06 | 0.6
outputs are computed by convolving the source signal withctir- RNMCFLMS [ 01 | 16 [ 07 [ 0.6 [ 1.2 [ 12
i d ch L impulse responses and nofemis RNMCFLMM | 0.3 | 04 | 04 | 03 | 0.7 | 1.0
responding measured channel impu por . I Proposed 02 [ 06 | 07 | 03 | 03 [ 01
added to the results at a specified signal-to-noise ratidrjSidlue. PHAT 446 | 562 | 69.7 | 0.7 | 08 | 1L
The additive noise used in this work is white Gaussian ndi$i¢he 5 R oo o2 [ 0> 1 o2 03192
parameters are set to be the same as those experiments.ifF{i9] RNMCFLMM 02 [ 03 T 02 | 01 04 [ 0T
the proposed algorithm, the length of the adaptive filteO24l. and ngied 2%04 399-24 go-l7 8-2 8-? 8-51)
the parameter is setto 5.0. o _ 10 NMCFLMS T 04 [ 05 [ 06 [ 02 [ 01 [ 02
In the experiments, an estimate is yielded every frame with a RNMCFLMS | 0.2 | 0.0 | 01 | 01 | 01 | 08
fram iz f 64 ms (1024 mol . Th | number of fram RNMCFLMM 0.1 0.1 0.2 0.1 0.1 0.4
ame size of 64 ms (1024 samples) e total number of frames Proposed e e

is 1886. Two performance metrics, namely the probability of
anomalous estimates and the root mean-squared error (RBISE)
nonanomalous estimates [10], [12], are used to evaluatpdtfer-  conducted in noisy and reverberant environments validiatedbust-
mance of the proposed algorithm. The true time delays froen thness of the developed TDE approach.

sound source to the three microphone pairs are respectively 19

samplesyis = 42 samples, ana»3 = 23 samples.

5. RELATION TO PRIOR WORK

3.2 Results TDE has attracted a significant amount of attention in therdit
- ture [1], [2]. Many methods for TDE have been developed,udel
The TDE results of the five studied algorithms are presemtéhi  ing the well-known generalized cross-correlation (GCChud [3],
ble 1. As seen, the NMCFLMS algorithm performs better than th [4], the blind channel identification based approach [S]—{8ulti-
PHAT algorithm. The RNMCFLMS algorithm is more robust to channel linear prediction algorithm [10]-[12], the infaation the-
moderate noise than the PHAT and NMCFLMS algorithms due tary based methods [13]-[15], etc. Among those methods, lthe b
the use of a spectral energy constraint; but it suffers framifs- multichannel identification approach based on the NMCFLN®B-a
cant performance degradation when the noise is strong. T™he R rithm is very attractive for single source TDE [8], [18]. Thader-
MCFLMM algorithm almost outperforms the previous threecalg lying core idea is that the channel impulse response fronsdhece
rithms mainly thanks to the use of the Huber estimator andathe to each microphone is first blindly estimated, and the timaydeare
ternate employment of the mean-squared error (MSE) and -mearhen determined by comparing the time differences of thectipath
absolute error (MAE) criteria in the time-domain Huber estior  components between different channels [1], [8], [18]. Téiigo-
[19]. Among the five studied TDE algorithms, the proposedalg rithm is robust to reverberation since reverberation id weldeled
rithm obtains the best performance, especially in the envitents  in the algorithmic formulation; but it is found sensitive toise. It
with low SNRs. This enhancement comes from the fact that thevas extended to an RNMCFLMS method by introducing a flatness
global frequency-domain adaptive filter uses the frequelmyain  constraint on the channel transfer functions [24], [26]t the ro-
Cauchy estimator, which is robust to deal with the speechiaian  bustness with respect to noise is still a great challenggcptarly
signals with impulsive spectra. This new algorithm can l@sveid as  when SNR is low. In an early work, we developed an RNMCFLMM
an improved version of the RNMCFLMS and RNMCFLMM algo- algorithm [19], where a Huber estimator [22] was used to taos
rithms. a robust time-domain cost function, from which we obtain dtmu
channel frequency-domain adaptive filter to blindly idgn& SIMO
system. The RNMCFLMM algorithm is more robust to both non-
4. CONCLUSIONS Gaussian and Gaussian noise than RNMCFLMS [26]. Howeer, it
In this paper, we proposed a global frequency-domain adgafitier performance suffers from degradations if the excitatigmalis are
algorithm for TDE in acoustic SIMO systems. The Cauchy estim speech. To improve performance in noisy and reverberaritogRv
tor is used to define a frequency-domain cost function, framckv ~ ments with speech excitation signals, we followed the gaoger-
a robust frequency-domain adaptive filter is derived tod#linden-  ties in the RNMCFLMS and RNMCFLMM algorithms and mean-
tify an acoustic SIMO system. This Cauchy estimator is isg&@  while adopted a Cauchy estimator to define a frequency-dooust
to the impulse-like structure of speech spectra while mstéhie ap-  function, which deemphasizes the large errors caused by &rec-
proximate adaption ability of the square cost function & #pectra  tral peaks of speech. From this new cost function, we deeelop
of the excitation signals are flat. Moreover, the Cauchynesior ~ a robust adaptive multichannel algorithm to blindly idgnicous-
is continuously differentiable as compared to the Hubenegor, tic SIMO systems from which a multichannel TDE algorithm s o
which yields a mathematically rigorous adaptive filter. Exments  tained.
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