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ABSTRACT

The steered response power (SRP) methods can be used to build a

map of sound direction likelihood. In the presence of interference

and reverberation, the map will exhibit multiple peaks with heights

related to the corresponding sound’s spectral content. Often in re-

alistic use cases, the target of interest (such as speech) can exhibit

a lower peak compared to an interference source. This will corrupt

any direction dependent method, such as beamforming.

Regression has been used to predict time-frequency (TF) regions

corrupted by reverberation, and static broadband noise can be ef-

ficiently estimated for TF points. TF regions dominated by noise

or reverberation can then be de-emphasized to obtain more reliable

source direction estimates. In this work, we propose the use of con-

volutional neural networks (CNNs) for the prediction of a TF mask

for emphasizing the direct path speech signal in time-varying inter-

ference. SRP with phase transform (SRP-PHAT) combined with the

CNN-based masking is shown to be capable of reducing the impact

of time-varying interference for speaker direction estimation using

real speech sources in reverberation.

Index Terms— sound source localization, steered response

power, convolutional neural networks, time-frequency masking

1. INTRODUCTION

The traditional methods for localization of a sound source using

a microphone array exploit the observed wavefront’s time differ-

ences of arrival (TDOA). With the knowledge of microphone po-

sitions, propagation speed of sound, and estimates of TDOA values

between microphone pairs, the source position can be estimated us-

ing a closed-form solution or an iterative approach, refer to [1] for a

review of such methods. The generalized cross-correlation (GCC) is

a popular method for TDOA extraction, and GCC with phase trans-

form (GCC-PHAT) has been widely used due to its robustness. How-

ever, the successful extraction of TDOA values depends on the SNR,

the level of interfering sources, and the amount of reverberation. Re-

verberation even in moderate amounts is able to deteriorate TDOA

estimation [2]. In [3] ridge-regression is used to learn the localiza-

tion precision of a TF point, that is used to weight the GCC-PHAT

to improve TDOA estimation in a simulated setting. GCC-PHAT

can be also enhanced with a TF mask that aims to remove compo-

nents of broadband noise. In this direction a continuous [4] and bi-

nary weighted TF mask based on SNR estimation is proposed in [5],

which was shown to lessen the effects of coherent broadband noise

in TDOA estimation.

The SRP method is a more robust localization approach than

the TDOA approach. Instead of extracting a single TDOA value

for each microphone pair, the array is steered to different directions.

The authors wish to acknowledge CSC IT Center for Science, Finland,
for computational resources.

The direction with the most power represents the dominant source

direction. SRP based on the GCC-PHAT (SRP-PHAT) removes the

amplitude information by whitening the signal and thus utilizes only

the cross-spectrum phase information. It is typically adopted in in-

door localization [6].

Binary TF masks have been applied in computational auditory

scene analysis (CASA) to separate the components of a spectrogram

caused by different sound sources [7]. Separation is performed by

multiplying the noisy spectrogram with the mask. Continuous real-

valued masks have been found less susceptible to musical artifacts.

The classical Wiener-filter is an example of a continuous TF mask.

Recent deep neural network (DNN)-based single channel speech en-

hancement methods have been successful in learning to predict TF

masks in various noisy conditions [8, 9].

Convolutional neural networks (CNNs) are discriminative clas-

sifiers that compute their neuron activations through shared weights

over local receptive fields. They have been used widely and pro-

duced state-of-the-art results in classification tasks such as image

recognition [10], speech recognition [11] and acoustic event de-

tection [12]. Apart from classification, CNNs have also been

proposed for regression tasks where both input and target output

consists of multi-dimensional data such as images. Image restora-

tion/denoising [13], image super-resolution [14] and weighted mask

estimation for speech source separation [15] can be listed as exam-

ples of CNN applied over regression tasks.

This paper is inspired by the success of DNN-based TF mask

learning for speech enhancement and considers the approach in

speaker localization. In contrast to previous TF mask-based TDOA

estimators using GCC-PHAT in the presence of static noise and/or

reverberation, we consider the SRP-PHAT approach in presence

of reverberation with non-stationary interference. Speech signals

contain significant local information in spectral domain. However,

the spectral position of this information may exhibit some shift

due to changing speaker and environmental conditions. The trans-

lational shift invariance property of CNNs make them a suitable

option for our task, and therefore we propose to use CNNs for TF

mask estimation. The CNN is trained to learn the mapping between

the noisy input signal’s magnitude spectrogram and the Wiener

filter, which is modeled to separate the direct path speech from di-

rectional non-stationary interference and reverberation. The room

impulse responses (RIRs) from several rooms are used to generate

speech signals for training a single CNN for the mask prediction

in the presence of everyday interference sounds with varying lev-

els. The CNN-based weighted SRP-PHAT is tested by localizing

real moving and static speech sources in the presence of directional

time-varying interference and reverberation. Results show that the

directional likelihood of the speaker is increased over the traditional

SRP-PHAT. Consequently, the number of correct speaker direction

estimates is increased over the traditional SRP-PHAT.

The paper is organized as follows. Section 2 reviews the sig-
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Fig. 1. Training and testing framework for the proposed system. WF represents Wiener filter and FFT represents Fast Fourier transform.

Dashed lines indicate multi-channel input. ”| · | & Avg. over ch.” indicates averaging absolute values over channels.

nal model, presents the CNN-based TF mask learning system, and

the training procedure. Section 3 describes the static simulated data,

which is used to train the CNN-based TF mask learning, and the

recorded speech sentences that are used to evaluate the localization

performance. In Section 4 the sound source localization problem is

reviewed using TF masking in the SRP-PHAT framework. Localiza-

tion results are presented in Section 5, and Section 6 concludes the

discussion.

2. CNN-BASED TF MASK LEARNING

This section presents the used signal model, and how to obtain the TF

weights for the desired class of speech in presence of time-varying

interference sources.

The ith microphone signal xi(t, f) is expressed in the time-

frequency domain, where f = 0, . . . ,K − 1 is discrete frequency

index and t is processing frame index. The signal is modeled as the

sum of n ≥ 0 reverberated signals sn(t, f) emitted from positions

rn in presence of noise ei(t, f)

xi(t, f) =
∑

n
hmi,rn(f) · sn(t, f) + ei(t, f), (1)

where hmi,rn(f) is the RIR between source position rn ∈ R
3 and

microphone position mi ∈ R
3, both in Cartesian coordinates, and

i = 1, . . . ,M , where M is the number of microphones.

The TF mask of ith microphone signal is denoted as ηi(t, f) and

it takes values in range [0, 1]. The mask is designed to reduce the

contribution of TF points that do not belong to the target source [5].

Here, the Wiener filter is used to model the channel specific TF mask

of desired source q

ηi(t, f) =
|hdp

mi,rq (f) · sq(t, f)|
2

|hdp
mi,rq (f) · sq(t, f)|

2 + |ui(t, f)|2
, (2)

where |·| is absolute value, hdp
mi,rq (f) is the direct path-only compo-

nent of the RIR, and ui(t, f) is the mixture of all undesired signals,

i.e., the reverberated interference sources and target signal reverber-

ation

ui(t, f) = h̄mi,rq (f) · sq(t, f)

+
∑

n 6=q

hmi,rn(f) · sn(t, f) + ei(t, f), (3)

and h̄mi,rq (f) denotes the RIR without the direct path component

i.e. it models only the undesired reverberation of the target source.

The latter sum of Eq. (3) is the sum of undesired interference sources

convolved with their corresponding RIRs in presence of added noise.

The input to the CNN is a 32-frame patch of the log-magnitude

spectrogram. The target output is the corresponding TF mask patch.

To save computational cost of training channel specific masks, the

training target is obtained by averaging the masks over the array

channels. Similarly, the input feature is averaged over the chan-

nels. The resulting mask is therefore common for all channels, i.e.

ηi(t, f) = ηj(t, f), ∀i, j, t, f .

The CNN architecture used in this work are as follows. Four

convolutional layers with 96 feature maps and rectified linear unit

(ReLU) activation functions perform 11-by-5 (time-by-frequency)

convolution over their inputs. First three convolutional layers are fol-

lowed by a max-pooling layer with downsampling pool size of four

frequency bins. Max-pooling is not performed over time domain, as

our aim is to obtain the estimated TF mask for each frame. The con-

volutional layers are followed by an output feed-forward layer with

sigmoid activation. The input for this layer is the concatenated fea-

tures from each feature map for each frame. Same feedforward layer

weights are applied to the features from each frame. The sigmoid

output of this layer is used as the estimated TF mask.

CNN training settings used in this work are as follows. Mean

squared error is used as the loss function. For each convolutional

layer, batch normalization [16] and dropout [17] with rate 0.25 is

used. During training, Adam gradient-based optimization [18] is

used. The optimal network parameters are found over grid search

and the model is chosen as the one with the least average validation

loss over different interference conditions.

3. DATA DESCRIPTION

The used RWCP-SSD database [19] consists of acoustically different

spaces1 with different reverberation characteristics. A room specific

number of annotated source angles is used to capture static RIRs us-

ing a 16 microphone circular array with a 15 cm radius placed at

approximately 2 m distance from the sources. In addition, a num-

ber of sentences spoken in Japanese are played back from a static

and a moving loudspeaker. In the moving speaker recording, the

speaker’s azimuth angle follows a path between 50◦ − 130◦, during

which the loudspeaker distance ranges from 1.6 m to 2.0 m from the

microphone array. An infrared-based tracking device is used to pro-

duce ground truth direction of the moving speaker. The static speech

recordings utilize a single loudspeaker angle, and the ground truth

angle is obtained from the acoustic signal2. The amount of rever-

beration, number of used RIRs, and the number of available speech

recordings is presented in Table 1 for each used room. The RIRs

are divided into non-overlapping training, validation and testing sets.

The data is mixed at 48 kHz sampling rate, which is the sample rate

used to obtain RIRs. The generated mixtures are then downsampled

to 16 kHz.

1Moving panels are used in order to alter reverberation to generate some
of the spaces in addition to using different rooms.

2The median of azimuth angles obtained with Eq. (5) from frames with
detected voice activity.
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Fig. 2. Left: clean signal recorded from a moving speaker in rever-

berated conditions (no interference). Center and right: clean signal

+ 0 dB interference + CNN-based mask with interference source as

(a,b): Household, (c,d): Interior background, (e,f): Printer noise.

3.1. Audio mixture generation for CNN training

The synthesized training data is produced as follows. Three sets of

data is generated for CNN training, validation, and testing. Speech

sentences from TIMIT database are divided based on speaker iden-

tity into these sets. Everyday sounds that consist of office printer

noise, household noise, and interior background are used as inter-

ference, and are from the BBC sound effects library (obtained from

Stockmusic3). Each class of interference signal is also divided into

the three sets of non-overlapping recordings.

For each set, randomly selected speech signals are convolved

with the set-specific RIRs corresponding to available loudspeaker

angles. Interference signals are then convolved with the set-specific

RIRs associated to another loudspeaker angle that is spatially non-

overlapping and the signals are then mixed. The process is re-

peated for each room using all pairwise loudspeaker angle combi-

nations. The speech-to-interference ratio (SIR), calculated using

time-domain signal values, of −6 dB, 0 dB, +6 dB, and +12 dB

are used to vary the level of interference. Finally, recorded ambi-

ence from room OFC is added with randomly drawn relative level

between [−6,−12] dB with respect to the observed speech level to

model realistic room conditions. Five repetitions of the described

process is used to produce a total 22440 training, 3000 validation,

and 5160 test mixtures for the CNN training.

3.2. Audio for localization performance analysis

The used speech data consists of array recordings of Japanese sen-

tences emitted using either the static or the moving loudspeaker.

These speech recordings are mixed with the (test-set) interference

signals using all of the test-set RIRs. These signals or the utilized

RIRs have not been used to train the CNN. Prior to mixing, the

speech recordings are pre-processed by spectral subtraction to de-

crease the amount of static noise using a quantile-based method [20]

(with q = 0.3). The process is repeated five times using the same

SIR levels as in CNN training data generation. A total of 1440 and

1560 mixtures are created to evaluate the localization performance

of the moving and static speaker, respectively.

3www.stockmusic.com
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Fig. 3. a) SRP-PHAT L(θ, t) for moving speaker in reverberation.

b) SRP-PHAT with added printer interference at +6 dB SIR, c) SRP-

PHAT with ICM weight for the mixture, d) SRP-PHAT with CNN

predicted weight for the mixture. Black dashed lines represent the

±10◦ angle around the ground truth. Dots represent DOA estimates

with color associated to speech activity. SRP values in frames with-

out speech activity are set to zero.

4. SRP-PHAT WITH TF MASKING

Based on the weighted GCC-PHAT [5], the weighted SRP-PHAT is

the sum of weighted GCC-PHAT functions for sound wave direction

k over all microphone pairs {i, j}

L(k,t)=
∑

i,j

K−1
∑

f=0

ηi(t, f)xi(t, f)·(ηj(t, f)xj(t, f))
∗

|xi(t, f)|·|x
∗
j (t, f)|

e·τi,j ·ωf ,

(4)

where ηi(t, f) is the TF mask for the ith signal,  is the imaginary

unit, (·)∗ denotes complex conjugate, ωf = 2πf/K is the angular

frequency, and τi,j = k
T (mi − mj)/c is propagation time differ-

ence between microphones, where k ∈ R
3 is defined as a Cartesian

unit vector of the sound wave direction and c is the speed of sound.

The point estimate for DOA is obtained by

k̂(t) = argmax
k

L(k, t). (5)

5. RESULTS

The array signal is processed at a sample-rate of 16 kHz. The frame

length is set to 21.4 ms. Sine windowing with 50 % overlap is ap-

plied. Refer to Fig. 1 for an overview of the CNN training and testing

process.

To illustrate the interference reduction capability of the CNN-

based mask, Fig. 2 displays an example of the moving speaker sig-

nal’s spectrogram in three types of used interference, before and after

applying the predicted mask.

Table 1. Reverberation times, amount of RIRs used for training,

validation and testing, and the number of speech recordings is spec-

ified for each of the rooms. Room naming conventions follow the

RWCP-SSD database [19].
Room E2A E2B E1B E1C OFC JR1 JR2

RT60(s) 0.3 1.3 0.31 0.38 0.78 0.6 0.47

Train RIRs 8 8 9 9 8 8 3

Validation RIRs 3 3 4 4 3 3 2

Test RIRs 3 3 6 6 3 3 2

Moving speakers 50 50 0 0 50 50 0

Static speakers 50 50 0 0 50 50 50
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Table 2. Relative amount of SRP-PHAT likelihood mass near the

ground truth source angle (±10◦) normalized with SRP-PHAT of

the speech signal without interference. Difference to SRP-PHAT is

given for CNN and ICM-based weighting.
Household Interior background Print

SIR[dB]
SRP-PHAT weight SRP-PHAT weight SRP-PHAT weight

- ∆ICM ∆CNN - ∆ICM ∆CNN - ∆ICM ∆CNN

Static speaker

+12 64.1 +6.5 +10.1 69.8 +8.6 +12.8 54.8 +7.4 +11.7

+6 53.8 +8.4 +9.3 58.9 +10.7 +12.2 45.8 +9.9 +9.7

0 46.1 +10.4 +7.3 48.8 +13.4 +10.6 36.7 +12.1 +6.3

−6 36.2 +13.1 +4.2 38.9 +14.6 +7.0 29.8 +13.6 +3.4

Moving speaker

+12 68.6 +5.5 +10.9 73.5 +7.6 +12.8 58.7 +6.7 +12.1

+6 59.0 +7.4 +9.7 63.0 +10.5 +13.0 48.5 +10.0 +9.8

0 50.2 +10.2 +7.3 52.1 +13.2 +10.5 39.9 +12.8 +6.5

−6 38.5 +13.7 +4.4 41.4 +15.4 +6.3 32.0 +15.2 +3.5

Speaker localization performance is analyzed by examining rel-

ative frame-wise SRP-PHAT likelihood around ±ψ azimuth angle

of the ground truth source direction4 θ(t) in one degree resolution

pψ(t) =
(

∑ψ

ϑ=−ψL(θ(t) + ϑ,t)
)

/
(

∑

359
◦

ϑ=0◦
L(ϑ,t)

)

. (6)

The SRP-PHAT values are normalized in each frame separately by

first removing the minimum value and then by dividing with the

maximum value. Three SRP-PHAT variants are evaluated for the

mixtures using source angles in the horizontal plane:

1. Traditional SRP-PHAT (i.e. ηi(t, f) = 1), refer to Eq. (4)

2. Proposed CNN-based mask weighted SRP-PHAT, refer to

Sections 2 and 4.

3. Interference canceling mask (ICM) weighted SRP-PHAT, re-

fer to Eqs. (2), and (4). The ICM is obtained using the WF,

where the reverberated interference signal is the noise signal,

and the array recording of the speech is the target signal.

Figure 3 panel a) depicts the SRP-PHAT for the moving speaker

without interference, panel b) illustrates SRP-PHAT output for the

mixture signal (printer) in +6 dB SIR case. Panels c) and d) depict

the ICM and the CNN mask weighted SRP-PHAT, respectively. The

interference source is in direction 220◦ and its SRP-PHAT likelihood

is decreased by the use of masks, refer to panels c) and d). Note also

the restoration of correct DOA estimates as a result of applying the

CNN mask, e.g., in frames 70–100.

Only frames with detected voice activity are included in the

analysis. Frame level voice activity is estimated by a feed forward

neural network that was trained using MFCC features from a sub-set

of test-data, where target values were obtained with manual labeling.

Table 2 presents the relative amount of SRP-PHAT likelihood

mass near the ground truth source direction (±10◦ azimuth). The

portion of SRP-PHAT likelihood near ground truth source direction

without interference is used as the reference value of 100%. Dif-

ference to basic SRP-PHAT is given for the ICM and CNN-based

methods. The results for each combination of interference signal

type and SIR level are given as average values over different rooms,

interference source angles, and repetitions.

For every type of interference in every SIR level, in contrast to

SRP-PHAT, the proposed CNN masking results in higher concen-

tration of SRP-PHAT likelihood around the ground truth source di-

rection for both static and moving speakers. In every +12 dB and

4For simplicity, we denote the SRP-PHAT function L(k, t) of Eq. (4)
with only azimuth angle L(θ, t) when the elevation angle is in the horizon-
tal plane. The relationship between DOA vector k and azimuth angle θ is
Cartesian to spherical transformation.

Table 3. DOA point estimate results relative to SRP-PHAT results

without interference. Percentage of correct DOA estimates around

ground truth source angle (±10◦) in the presence of interference.

Difference to SRP-PHAT is given for CNN and ICM-based methods.

Household Interior background Print

SIR[dB]
SRP-PHAT weight SRP-PHAT weight SRP-PHAT weight

- ∆ICM ∆CNN - ∆ICM ∆CNN - ∆ICM ∆CNN

Static speaker

+12 67.1 +11.1 +3.2 75.1 +8.3 +2.7 55.1 +12.8 +6.3

+6 51.3 +15.9 +5.5 60.7 +13.9 +4.1 38.8 +19.0 +7.9

0 36.6 +20.8 +6.8 44.5 +20.3 +6.4 19.3 +25.3 +9.2

−6 18.8 +25.0 +7.1 25.7 +24.6 +6.1 6.7 +25.9 +8.0

Moving speaker

+12 73.8 +9.0 +2.9 80.2 +7.3 +2.3 63.5 +11.3 +5.2

+6 59.9 +14.5 +4.8 68.3 +13.1 +3.7 44.8 +19.8 +7.4

+0 44.8 +20.7 +5.4 51.7 +20.0 +4.9 25.9 +27.6 +9.5

−6 23.5 +28.3 +7.8 31.5 +27.1 +4.3 9.7 +31.1 +8.8

most of the +6 dB SIR mixtures the CNN masking even surpasses

the ICM. Since here the ICM has only access to the reverberated

captured speech and not the direct path signal it is plagued with the

undesired reflections of speech from walls. These reflections con-

tribute to the SRP-PHAT evidence in regions outside of source di-

rections. In contrast, the CNN mask is trained to separate the direct

path component from reflections and is able to suppress the low level

of interference and the reverberation. However, in higher levels of

interference the ICM results in better localization performance than

the mask predicted by the CNN. This is most likely due to non-ideal

generalization performance of the CNN to unseen data, but the re-

sults are still improved over traditional SRP-PHAT.

Table 3 presents the percentage of correct point DOA estimates

for the three SRP-PHAT variants over frames with speech activity.

The angle resulting in maximum SRP-PHAT likelihood is taken as

the point estimate for each frame, refer to Eq. (5). The number of

correct DOA estimates for SRP-PHAT in the ground truth direction

without interference is used as the reference value of 100 %. Dif-

ference to basic SRP-PHAT is given for the ICM and CNN-based

methods. The ICM has the best performance in all SIR levels and for

all interference types. The proposed CNN masking retains a higher

percentage of correct DOA values than the basic SRP-PHAT in all

cases.

6. CONCLUSIONS

This paper considers using time-frequency masks, predicted by

CNNs, for the reduction of the detrimental effects caused by rever-

beration and time-varying interference in the SRP-PHAT localiza-

tion function. Measured RIRs, speech, and interference signals are

used to construct training data for the CNN in order to learn the

mapping between a noisy input log-magnitude spectrogram and a

corresponding desired TF mask. The mask is here modeled using

the Wiener filter to reduce the magnitude of the interference and the

reverberation of the target speech signal.

The proposed method is tested using both static and moving

speech sources mixed with different levels of everyday interference

signals. Averaged over different rooms, interference source angles,

and repetitions, the CNN-based TF mask was found to reduce the ef-

fects of interference and reverberation in the SRP-PHAT likelihood

map. This is also evident in the increased number of DOA estimates

towards the ground truth source direction. The localization results

were obtained using Japanese speech, while training was performed

with English (TIMIT sentences). This mismatch suggests a good

generalization capability of the CNN-based mask estimator.
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