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ABSTRACT

Speaker localization using microphone arrays is typically
based on the expected phase and amplitude differences be-
tween microphones as a function of the wave arrival direction.
However, in rooms with significant reverberation, the direct
sound is contaminated by reflections and localization often
fails. Recently, a reverberation-robust localization method
was proposed, which uses only the direct-path bins in the
short-time Fourier transform (STFT) of the speech signals.
The method is based on thresholding according to the ratio
between the first two singular values of the spatial spectrum
matrix. In this work, a confidence measure is developed based
on this ratio, which is then used for speaker localization in a
statistical estimation framework, based on a Gaussian mix-
ture model. The paper presents the theory of the proposed
method and simulation examples validating the advantages of
the new approach.

Index Terms— Speaker localization, reverberation, spher-
ical microphone arrays, multiple signal classification, Gaus-
sian mixture model

1. INTRODUCTION

The estimation of the direction of arrival (DoA) of speech sig-
nals in a room, using an array of microphones, is important
in applications such as speech enhancement, source separa-
tion, robot audition and video conferencing. A wide range of
methods has been developed for DoA estimation of sources
in general, based on beamforming [1], and on subspace meth-
ods such as multiple signal classification (MUSIC) [2] and
estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) [3]. Speakers in a room typically generate
coherent signals due to room reflections, and so DoA esti-
mation methods designed for coherent sources are more suit-
able for speaker localization. The coherent signal subspace
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method (CSSM) [4] employs frequency smoothing to restore
the reduction in rank of the spatial spectrum matrices, thereby
overcoming the degradation in performance due to source co-
herence. Recent DoA estimation methods for speech signals
exploit their non-stationarity and sparsity in the short-time
Fourier transform domain to improve DoA estimation perfor-
mance even for under-determined systems with more sources
than microphones [5, 6]. Although well-suited for speech,
the performance of these methods degrades significantly un-
der reverberation, as the sparseness property is easily affected
by reverberation [7]. Mohan et al. [8] developed a coherence
test to identify time-frequency bins that are dominated by a
contribution from a single source. Although this method fa-
cilitates the localization of more sources than microphones, it
fails at moderate levels of reverberation due to the failure of
the coherence test.

Recently, a method for DoA estimation of multiple speak-
ers in a room has been developed [9]. Similarly to the co-
herence test [8], the method processes the microphone sig-
nal in the time-frequency domain, and employs a test, re-
ferred to as the direct-path dominance (DPD) test, to iden-
tify time-frequency bins dominated by a single source. How-
ever, unlike the coherence-test-based method, the DPD-based
method employs frequency smoothing such that direct sound
and room reflections become incoherent, therefore overcom-
ing the effect of room reverberation. Furthermore, the method
is designed for spherical microphone arrays [10], so that DoA
estimation can be applied for sources in all directions, and the
frequency smoothing operation can be employed without the
need for focusing matrices [9]. Experimental investigations
have validated the robustness of the method to reverberation
[9].

Although the DPD-test-based method is useful, it has lim-
itations. In particular, under real-life conditions of high rever-
beration, only a few time-frequency bins pass the DPD test
and DoA estimation is based on only a few samples, lead-
ing to increased errors due to the limited statistical informa-
tion. This paper proposes an approach to overcome this lim-
itation. The threshold of the DPD test, based on the ratio of
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the first two eigenvalues of the spatial spectrum matrix, is re-
laxed, allowing for more time-frequency bins to pass the DPD
test. Then, statistical analysis is employed to estimate the
DoA. Since this relaxation, may, however, lead to inclusion
of biased samples in the computation, simple linear estima-
tors, such as straightforward maximum-likelihood estimation,
will fail. Hence, a Gaussian mixture model is applied to the
DoA samples, leading to an even more robust and accurate
DoA estimation. The paper presents the development of the
new algorithm, and simulation results for DoA estimation of
a speaker in a room, comparing the proposed method to the
original DPD-test-based method.

2. SPHERICAL ARRAY PROCESSING

This section presents the system model and the array pro-
cessing employed before DoA estimation is performed. Con-
sider a spherical microphone array with Q microphones ar-
ranged on the surface of a rigid sphere. Other array con-
figurations can also be considered using a similar formula-
tion [10]. The sound pressure at the microphones is denoted
by p(k, r, θq, φq), with k the wave number, r the sphere ra-
dius, and (θq, φq) denoting the spherical coordinates of mi-
crophone q. Denoting Ωq ≡ (θq, φq), the sound pressure at
the microphones can be written as [9]

p = Vs + n (1)

where p = [p(k, r,Ω1), ..., p(k, r,ΩQ)]T , denotes the sound
pressure at the Q microphones, s = [s1(k), ..., sL(k)]T de-
notes the L sources composing the sound field, V is the Q×
L steering matrix denoting the transfer function from each
source to each microphone, and n = [n1(k), ..., nQ(k)]T rep-
resents the sensor noise. Equation (1) can be rewritten by
representing the steering matrix in the spherical harmonics
domain [9]

p = Y(Ω)BYH(Ψ)s + n (2)

where Y(Ω) is the Q× (N + 1)2 spherical harmonics matrix
with the complex spherical harmonics functions Y m

n (Ωq) of
order n and degree m as its elements at row number q and
column number n2 + n+m+ 1. The (N + 1)2 × (N + 1)2

diagonal matrix B holds the radial functions that represent
the scattering of a plane wave from a rigid sphere [10], and
the L × (N + 1)2 matrix Y(Ψ) has a similar structure to
matrix Y(Ω), with Ψ representing source arrival directions.

Equation (2) is now reformulated in a process referred to
as plane wave decomposition [10]. It is first multiplied from
the left by the pseudo-inverse [Y(Ω)]†, and then by the in-
verse B−1, leading to

a = YH(Ψ)s + ñ (3)

with the (N + 1)2× 1 vector a = [a00(k), ..., aNN (k)]T rep-
resenting the plane wave density function in the spherical har-
monics domain, and ñ = B−1[Y(Ω)]†n. In the final stage,

Eq. (3) is written in the short-time Fourier transform domain,

a(τ, ν) = YH(Ψ)s(τ, ν) + ñ(τ, ν) (4)

with τ denoting the time index and ν denoting the frequency
index.

3. DOA ESTIMATION USING THE DPD TEST

Equation (4) forms the basis of DoA estimation using the
DPD test. Details of this algorithm can be found in [9]. In
this section the algorithm is presented briefly. The algorithm
employs MUSIC for DoA estimation, and so a spatial spec-
trum matrix is first composed as

R(τ, ν) = [a(τ, ν)aH(τ, ν)]. (5)

[·] denotes averaging, which in practice is performed over a
predefined range over time and frequency. Frequency averag-
ing, or smoothing, is required so that the direct sound can be
distinguished from coherent room reflections [9]. Following
the procedure of MUSIC, the singular-value decomposition
of R is computed, and the time-frequency bins, (τ, ν), that
pass the DPD test are identified,

D =

{
(τ, ν) :

σ1(R(τ, ν))

σ2(R(τ, ν))
≥ T H

}
(6)

where σ1 and σ2 denote the largest and the second largest
singular values, respectively, and T H is a threshold value,
sufficiently larger than one, therefore guaranteeing that R is
dominated by a single singular vector. This is an important
stage in the algorithm, because this condition guarantees that
the signals measured by the microphones are dominated by a
single plane wave sound field. For speakers in a room, this
is typically produced by the direct sound from the source, be-
cause room reflections tend to arrive with a delay relative to
the direct sound.

In the following stage, the MUSIC spectrum, P (Θ), is
calculated for all bins that pass the DPD test, i.e. for all
(τ, ν) ∈ D,

P (Θ) =
1

||Un
Hy∗(Θ)||2

(7)

with Θ = (θ, φ) representing the search grid for source direc-
tions, and (N+1)2×1 vector y having elements of the spher-
ical harmonics functions Y m

n (Θ) at column number n2 +n+
m+ 1. Matrix Un of size (N + 1)2 × [(N + 1)2 − 1] repre-
sents the noise subspace assuming a single source, and so its
columns hold the singular vectors of matrix R corresponding
to the smallest singular values.

In the final stage of the algorithm, source DoAs are esti-
mated using two different approaches. In the first approach,
the MUSIC spectrum is averaged for all time-frequency bins
that pass the DPD test, and dominant peaks are then identi-
fied in this averaged spectrum, representing DoAs of domi-
nant sources. In the second approach, the DoA is found for
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each time-frequency bin by clustering singular vectors with a
similar direction, constructing an averaged MUSIC spectrum
for each cluster, and identifying the DoAs for each cluster
separately. Furthermore, whitening is applied whenever the
noise variance of signal ñ is significant. This approach was
shown to be robust to reverberation, and capable of DoA esti-
mation of several speakers in a reverberant room [9].

4. DOA STATISTICS

This section presents an analysis of the statistics of DoA es-
timation on a segment of speech. Insights from this analy-
sis will motivate the development of an improved statistical
method for the DPD-test-based DoA estimation algorithm.
Consider a single speaker in a reverberant room. The room
size is 8 × 5 × 3 meters, the reverberation time is about 1 s,
and the critical distance is 0.6 m. Room impulse responses
from a point source in the room to a spherical array with 32
microphones of order N = 3, positioned 2 m away from the
source are simulated using the image method [11]. Micro-
phone signals are produced by convolving the room impulse
responses with speech from the TIMIT database [12]. The
effects of spatial aliasing and sensor noise are assumed to be
negligible [10].

Figure 1 presents a spectrogram of the clean and reverber-
ant speech signals as measured at the center of the array. The
figure clearly illustrate the time-smearing effect of reverbera-
tion. The DPD-test-based algorithm as presented in the pre-
vious section has been applied to the speech data. Algorithm
parameters include: a sampling frequency of 16 kHz, an FFT
size of 512 samples, STFT analysis using a Hanning window
with 50% overlap, and averaging of the spatial spectrum ma-
trix using a 2× 15 window over time and frequency. The out-
put was a DoA estimate for each bin in the STFT map, and an
associated σ1/σ2 ratio, see Eq. (6). Figure 2 shows the result-
ing sigma-ratio map for each bin. The figure shows that most
values are relatively small, i.e. smaller than 3 (10 dB), while
only a small proportion have much higher values. In the
second part of the analysis, DoA estimation was performed
using 3 different threshold values, i.e. T H ∈ [2, 5, 10], see
Eq. (6). Then, mean and standard deviation for each group
of DoA estimates, for both θ and φ, were compared to the
true DoA. Figure 3 shows the results of this analysis. Three
important observations can be made. As the value of σ1/σ2
increases, (i) the mean value becomes more accurate, i.e. bias
is reduced, (ii) the variance decreases, and (iii) the population
becomes significantly smaller (see figure caption for details).

In the final part of this analysis, the histogram of DoAs
for T H = 2 is presented in Fig. 4 as an example. While
the figure shows high concentration of DoAs around the true
values, the distribution seems to have more than a single peak.
This may well be the cause of the bias when simple averaging
is used for estimation.

Although the analysis in this section was presented

Fig. 1. Spectrogram of clean and reverberant speech.

through a single example, a similar behavior was observed
for other room dimensions, source and microphone locations,
reverberation times, and speech signals. The main conclusion
from this analysis is that while the use of the DPD test with
high threshold levels may produce good DoA estimates, the
population becomes rapidly smaller, which may impose a
limit if shorter speech signals are available, for example. In
addition, the current method employs simple DoA averaging
and does not exploit the full statistics of bin-level estimates.
These limitations provide a motivation for improved methods,
as presented in the following section.

5. GMM BASED ESTIMATION

In order to allow for the use of more DoA estimation samples,
it becomes necessary to deal with their potential bias, ideally
through consideration of their complete statistical properties.
Hence, following the observation that the probability density
functions of the DoA estimates are non-Gaussian and seem to
be multi-modal, a Gaussian mixture model (GMM) appears
suitable for the distribution. The use of other models designed
specifically for circular and spherical distributions is left for a
future study. In this study, a GMM with 5 Gaussians was fitted
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Fig. 2. Time-frequency map of σ1/σ2.

Fig. 3. Mean and standard deviation of the estimated DoAs, θ̄
and φ̄, for threshold values T H ∈ [2, 5, 10]. Computed using
[18643, 766, 38] samples for the 3 threshold values, respec-
tively. The true DoAs are denoted by x-marks.

jointly to (θ, φ) using an EM algorithm [13]. The dominant
Gaussian, i.e. the one with the largest distribution peak, was
selected as the one representing the DoA, while the other 4
Gaussians were excluded from the analysis. Matlab functions
fitgmdist and cluster were employed in this analysis.
The estimated DoA was then computed as the mean of the
selected Gaussian.

6. SIMULATION STUDY

A simulation study was performed to assess the performance
of the two approaches. Simulation parameters are the same
as in Sec. 4, but with room dimensions, and source and ar-
ray locations, perturbed by 10 %, and with a randomly se-
lected speaker from the TIMIT database, for each realization.
The results of 20 realizations were averaged and the mean
errors have been computed for the two methods studied, (i)
DPD test with threshold set to T H = 10, which was se-

Fig. 4. Histograms of estimated DoAs, θ and φ, for threshold
values T H = 2. The true DoAs are denoted by x-marks.

lected as it achieved smaller errors than lower threshold val-
ues, while providing a sufficient number of time-frequency
bins that passed the test, e.g. dozens of bins for several sec-
onds of speech, see Fig. 3; and (ii) GMM-based estimation.
Table 1 presents the root-mean squared values of the errors
for both methods. The table shows that the reference method
of threshold and mean [9] has limited performance. This can
be explained by the bias that was observed in the preceding
analysis. The new method based on GMM distribution mod-
eling shows a significant improvement, probably due to the
robustness to the bias, which is the result of clustering of the
data into several Gaussian distributions.

Method T H Error θ Error φ
Mean [9] 10 6.5◦ 18.9◦

GMM [new] 2 2.1◦ 3.1◦

Table 1. DoA estimation errors for both methods, computed
as the root-mean squared error between the estimated and true
directions for each realization
.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented an analysis of the statistical prop-
erties of the DoA estimates in the DPD-test-based method.
It was shown that the DoAs have a multi-modal distribution,
so that computing the mean over multiple DoA samples po-
tentially leads to a biased estimate. Based on this under-
standing, a new estimator has been introduced, which uses
Gaussian mixture modeling to overcome this issue, and it has
been shown to significantly improve the DoA estimation. The
study of the effects of room acoustics and speech signal char-
acteristics on the DoA statistics is proposed for future work,
with the goal of deriving reliably unbiased estimators in the
presence of reverberation.
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