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ABSTRACT

It is almost seventy years after the publication of Claude
Shannon’s “A Mathematical Theory of Communication” [1]
and Norbert Wiener’s “Extrapolation, Interpolation and S-
moothing of Stationary Time Series” [2]. The pioneering works
of Shannon and Wiener lay the foundation of communication,
data storage, control, and other information technologies. This
paper briefly reviews Shannon and Wiener’s perspectives on
the problem of message transmission over noisy channel and
also experimentally evaluates the feasibility of integrating these
two perspectives to train autoencoders close to the information
limit. To this end, the principle of relevant information (PRI)
is used and validated to optimally encode input imagery in the
presence of noise.

Keywords—Autoencoder, Principle of Relevant Information
(PRI), Message transmission.

I. INTRODUCTION

Claude Shannon’s “A mathematical theory of communica-
tion” [1] published in 1948 marks the birth of information
theory. A unifying theory with profound intersections between
Probability, Statistics and Computer Science, Shannon’s infor-
mation theory provides the foundation of Digital Communica-
tion [3]. The Mathematical Theory of Communication led to
the architecture for the design of modern digital communica-
tion systems as shown in Fig.1.

This model, also known as the “Shannon paradigm”, is
general and applies to a great variety of communication sce-
narios. Specifically, a source encoder allows one to represent
the information source more compactly by eliminating redun-
dancy, while a channel encoder adds redundancy to protect
the transmitted signal against transmission errors. Source and
channel decoders are converse to source and channel encoder-
s. Obviously, there is duality between “source coding” and
“channel coding”, as the former tends to reduce the data rate
while the latter raises it [4].

Almost at the same time, Norbert Wiener published his
famous monograph, “Extrapolation, interpolation and smooth-
ing of stationary time series” [2]. According to Shannon’s
perspective, for any given degree of noise contamination
of a communication channel, with an appropriate coding-
decoding scheme, it is possible to communicate discrete digital
information nearly error-free up to a computable maximum
rate through the channel1. Wiener, however, approached this

1This is exactly the famous noisy-channel coding theorem (or Shannon’s
theorem).
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Fig. 1: Block diagram of digital communication system.

problem from a different point of view by adaptively filtering
the signal, i.e. distinguishing information from noise via error
minimization (normally via mean square errors (MSE)).

After seventy years’ development, it is now appropriate
to commemorate and comment on the great perspectives of
these two giants. In this paper, the perspectives of Shannon
and Wiener on message transmission over a noisy channel
are revisited. Furthermore, the similarities and connections
between autoencoder2 [5] (representative of Wiener’s per-
spective) and digital communication system (representative of
Shannon’s perspective) will also be discussed. Following this,
we present a novel autoencoder under the information theoretic
learning (ITL) [6] framework, which can automatically learn
an regularity-oriented hidden layer vector representation given
a distribution prior3. A simple simulation on image transmis-
sion over a memoryless Gaussian channel is conducted to
demonstrate the effectiveness of the proposed autoencoder and
also to experimentally clarify the two perspectives.

I-A. On message transmission: Shannon versus Wiener

Suppose we are given an information source which gen-
erates a sequence of symbols X = {X1, X2, ..., XT } taking
values in a finite alphabet X , let us consider the problem of
transmitting a realization of sequence x = {x1, x2, ..., xT }.

Recalling Shannon’s perspective (see Fig.1), the source
encoder seeks a mapping f : X T → {0, 1}∗ which associates
to any possible information sequence in X T a string in a
reference alphabet which we shall assume to be binary {0, 1}.
Suppose the resulting sequence of bits produced by f is
divided into blocks m1,m2,m3, ... of length M . Then the

2The reasons behind the selection of autoencoder is elaborated in I-B.
3We expect such regular map in the bottleneck layer of autoencoder can

play a similar role as the “constellation” map in digital communication system.
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channel encoder maps each M -bit message m ∈ {0, 1}M to a
codeword x(m) ∈ {0, 1}N , with N ≥ M . During channel
transmission, x is corrupted to y ∈ YN with probability
P (y|x) =

∏N
i=1 P (yi|xi)4. The output alphabet Y depends on

the channel. The channel decoder is a mapping from YN to
{0, 1}M which takes the received message y ∈ YN and maps
it to one of the possible original messages m′ ∈ {0, 1}M .
Finally, the source information is recovered with the source
decoder [7].

Wiener examines this problem from the point of view of
filtering or signal inference [8]. According to Wiener, the
channel influences sequence x according to:

y = f(x) + n (1)

where f refers to the “influence” function (maybe invertible)
that characterizes the channel’s properties, and n is unknown
noise term. Wiener was interested in finding an operator g, for
which the error term ‖x− g(y)‖22 can be minimized.

I-B. Why autoencoder

The central perspective of Wiener lies in the minimization
of information distortion (or error) during message transmis-
sion. For this reason, the general idea of the autoencoder
matches Wiener’s perspective well, as it always aims to
transform input into output with the least possible amount of
distortion.

Although vast of works have been done on unsupervised
learning, three main advantages set the autoencoder and its
variants apart from their counterparts: 1) their expressive
representations for complex data; 2) their flexibilities for
modification: we can just modify the loss functions in different
ways to suit our tasks [9]; and 3) it follows exactly an
encoder-decoder channel learning framework5, which has the
same block diagram as standard communication systems on a
metaphorical level (see Fig.2) [10]. Also, it is worth noting that
the Wiener-proposed cost function only quantifies second order
statistics; therefore it is unable to fully optimize the extraction
of signal from noise, and must be substituted.

II. AUTOENCODER REGULARIZED WITH
PRINCIPLE OF RELEVANT INFORMATION (PRI)

To evaluate the feasibility and effectiveness of Wiener’s
perspectives on message transmission over a noisy channel, we
elect to use an autoencoder (Fig.2) as a powerful implemen-
tation of Wiener’s idea but with an information theoretic cost
function to train the system. This newly designed autoencoder
is able to learn powerful representations in the bottleneck layer
given a distribution prior, which plays a similar role as the
“constellation” map in digital communication system.

In this section, we start with a brief introduction to the
elements of Renyi’s entropy as well as associated information
quantities. Based on this, the objective function for the “princi-
ple of relevant information” (PRI) is presented and formulated
under the ITL framework. After that, we give a short review of

4Throughout this paper, we only consider memoryless channels, in which
the noise acts independently on each bit of the input.

5Interested readers can refer to Appendix C of [10] for more details.
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Fig. 2: Block diagram of encoder-decoder channel learning scheme.

our previously proposed ITL-autoencoder [11] and also present
an alternative one regularized using the PRI.

II-A. Elements of Renyi’s entropy and the principle of
relevant information (PRI)

In information theory, a natural extension of the well known
Shannon’s entropy is Renyi’s α-entropy [6]. For a random
variable X with probability density function (PDF) f(x) in
a finite set X , the α-entropy Hα(X) is defined as:

Hα(f) =
1

1− α
log

∫
X
fα(x)dx. (2)

Likewise, extensions for the relative entropy also exist; a
modified version of Renyi’s definition of α-relative entropy
between random variables with PDFs f and g is given by:

Dα(f‖g) = log
(
∫
gα−1f)

1
1−α (

∫
gα)

1
α

(
∫
fα)

1
α(1−α)

. (3)

The limiting case of (2) and (3) for α → 1 is Shan-
non’s entropy and Shannon’s relative entropy (or equivalently
Kullback-Leibler (KL) divergence), respectively. It also turns
out that for the case of α = 2, the above quantities can
be expressed, under some restrictions, as functions of inner
products between PDFs. In particular, the quadratic entropy
of f and cross-entropy between f and g, can be expressed
respectively as:

H2(f) = − log

∫
X
f2(x)dx (4)

H2(f ; g) = − log

∫
X
f(x)g(x)dx (5)

and the associated relative entropy of order 2 is called the
Cauchy-Schwarz (CS) divergence and is defined as follows:

DCS(f‖g) = −
1

2
log

(
∫
fg)2

(
∫
f2)(

∫
g2)

(6)

Suppose we are given a random variable X with a known
prior PDF g, from which we want to find a description in
terms of a PDF f with reduced entropy, that is, a variable
Y that captures the underlying structure of X . The principle
of relevant information (PRI) [12] casts this problem as a
trade-off between the entropy H2(f) of Y and its descriptive
power about X in terms of their relative entropy DCS(f‖g).
Therefore, for a fixed PDF g, the objective of the PRI is given
by6:

J(f) = argmin
f

[H2(f) + λDCS(f‖g)]. (7)

6The minimization of relative entropy guarantees a powerful description to
the given PDF, while the minimization of entropy plays the role of finding
such structures (or regularities) [12], [13].
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II-B. PRI formulation under ITL framework

It is worth noting that, as it is often the case, the on-
ly available information about g is encoded in sample set
X ∈ (Rp)N , where p is the dimensionality of samples and
N is the cardinality of X . To handle this, a tractable solution
was proposed in [12] under an ITL framework. This method
combines Parzen density estimation with a gradient descent
procedure that minimizes (7) to match the desired density g.
The optimization problem becomes7:

J(f) = argmin
Y

[Ĥ2(Y ) + λD̂CS(Y ‖X)] (8)

where Y ∈ (Rp)M is a set of p-dimensional points with
cardinality M . Equation (8) is equivalent to8:

J(f) = argmin
Y

[(1− λ)Ĥ2(Y ) + 2λĤ2(Y ‖X)] (9)

Using Parzen density estimation with Gaussian kernel Gσ ,
the cost function of PRI can finally be formulated as:

− (1− λ) log( 1

M2

M∑
i,j=1

Gσ
√
2(yi, yj))

− λ log
( 1
MN

∑M
i=1

∑N
j=1Gσ

√
2(yi, xj))

2

( 1
N2

∑N
i,j=1Gσ

√
2(xi, xj))

(10)

where xi ∈ X and yi ∈ Y .

II-C. PRI-regularized autoencoder

The ITL autoencoder was initially introduced in [11] to pro-
vide an alternative variational regularization to the autoencoder
architecture, aiming to force the hidden code vector learned by
the (deep) architecture to be as close as possible to an imposed
prior. Specifically, the architecture of the ITL-autoencoder
(shown in Fig.3) consists of a 4-tuple AE = {E,D,L,R},
where E and D are the encoder and the decoder functions, L
represents the reconstruction cost function (MSE in Wiener
sense) that measures the difference between original data
samples s and their respective reconstructions ŝ = D(E(s))
and R denotes the functional regularization penalized on the
output of encoder E and given prior9.

The first generation of ITL-autoencoder uses an ITL diver-
gence descriptor (e.g., (5)) as the regularization function R,
rather than the classical parametric, closed-form KL divergence
or training a new discriminator network [14], [15]. Following
the work in [11], we present an alternative ITL-autoencoder,
which is also regularized with ITL descriptors. However,
differently from [11], we use the PRI regularization to learn
regularity-oriented hidden vector representations within a given
prior. Given input data set S with cardinality K, the cost
function can be represented as:

J = L(S,D(E(S))) + αĤ2(E(S)) + βD̂CS(E(S)‖P ) (11)

7Ĥ2(Y ), Ĥ2(Y ‖X) and D̂CS(Y ‖X) in (8) and (9) represent Parzen
density estimator to (4), (5) and (6).

8See Chapter 3 of [12] for more details.
9Examples of prior include Gaussian distribution, mixture of Gaussians

distribution as well as swiss roll distribution.
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Fig. 3: Block diagram of ITL-autoencoder in [11].

where α and β are tuning parameters, P = {pi}i=1,2,,K rep-
resents samples randomly generated from a prior distribution.

Discussion on parameters α and β.
It is worth noting that, the ratio of β/α plays the same role10

as the trade-off parameter λ in (7). For β/α → 0, all the
points in E(S) will collapse to a single point, which in the
limit case becomes independent of the target sample P . The
other extreme case is when β/α→∞; the system is already in
equilibrium, i.e., E(S) is initialized by the locations provided
by the sample P and will not move away. Interesting cases
arise when β/α = 1 or β/α ≈ 2. For instance, it has been
shown that the case β/α = 1 corresponds to the Gaussian
mean shift algorithm [16], and the case β/α ≈ 2 approximates
principal curves extraction. We illustrate this phenomenon in
Fig.4.

III. EXPERIMENTS ON IMAGERY TRANSMISSION

We conducted a simple imagery transmission experiment
using both the proposed autoencoder regularized with PRI
(PRI-AE for short) and a digital communication system. More
specifically, we randomly select 100 images from the MNIST
testing set and transmit them with either of the two mecha-
nisms11. Noise with the same Signal-to-Noise Ratios (SNRs),
ranging from 8dB to 18dB, are added to their respective
channels, i.e., bottleneck layer for PRI-AE and the physical
channel for communication system. The averaged MSE be-
tween transmitted imagery and received imagery are computed
for the purpose of performance comparison. In this paper, we
only consider the real discrete-time memoryless additive white
Gaussian noise (AWGN) channel.

III-A. Experimental setup

For the Shannon’s approach, we study the encoding-
decoding mechanisms of M -ary (M = 16 or 64) phase shift
keying (PSK) and quadrature amplitude modulation (QAM)
constellations using Bose, Chaudhuri, and Hocquenghem
(BCH) codes12 [17]. These configurations are used in many
wireless standards [18].

10Note that, the discussion on the effects of different values of β/α only
limited to the interplay between the second and third terms in (11). Similar
effects can be expected when incorporated with MSE cost function.

11We repeated same scenario with 50 independent trails, no special circum-
stances occurred.

12Both the Gray labelings and non-Gray labelings are considered for
different constellations. Besides, we only use the basic [7, 4] BCH code for
simplicity.
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Fig. 4: Hidden code visualization using (a) the mixture of 10 Gaussians prior; (b) ITL-autoencoder [11] with CS divergence; PRI-AE with (c)
β/α = 10 and (d) β/α = 2 for MNIST database.
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(b) 64-ary PSK
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Fig. 5: MSE comparison between PRI-AE and standard communication system with (a) 16-ary PSK modulation; (b) 64-ary PSK modulation;
(c) 16-ary QAM modulation and (d) 64-ary QAM modulation.

For PRI-AE, the bottleneck layer is restricted to have only
2-dimensional latent codes which corresponds to the role of
“constellation” maps in digital communication systems. To
avoid hyper-parameter tuning, we also constrained our encoder
and decoders, E and D, to have the same architecture as those
used in [11], [14], i.e., each network is a two hidden layer fully
connected network with 1000 hidden neurons. Since MNIST
has 10 classes, we use as the distribution prior a mixture of
10 Gaussians. The kernel size for PRI is fixed to be 10, as
recommended in [11].

We implement the ITL-autoencoder [11] and PRI-AE both
with the Keras library. Companion source code is available
from the project homepage. During training, we configure
our model using MSE loss and the Adadelta optimizer13.
We separate 10000 samples from MNIST training set for
validation. The training is iterated for 100 epochs, which, it
has been observed, to be sufficient to reliably converge. In
each epoch, we use batches of 1000 samples for a reliable
PDF estimation.

III-B. Experimental results
The imagery transmission results for four modulation sce-

narios are demonstrated in Fig.5. Generally, Shannon’s per-
spective seems to be better, but the autoencoder is less sensitive
to noise levels and even does better for lower SNRs for M -
ary PSK modulations. Meanwhile, it is interesting to find that
16-ary PSK modulation produce the closest performance to
PRI-AE. This is not surprising, since the “constellation” map
of 16-ary PSK modulation looks most similar to our learned
regularity map as shown in Fig.4(d), both of which use the
angle discrepancy to handle “channel” noises.

13We use the default parameters in Keras library.

IV. CONCLUSIONS

In this paper, we reviewed Shannon and Wiener’s perspec-
tives on message transmission over a noisy channel and also
experimentally evaluated the feasibility of integrating these
two perspectives to train autoencoders close to the information
limit. To this end, the principle of relevant information (PRI)
is used and validated to optimally encode input imagery in the
presence of noise.

For PRI-AE, we focused exclusively on the MNIST
database. Although we tested the algorithm on examples that
were not seen during training, we have not yet explored
attempts to transmit images drawn from a different domain.
We expect that performance would degrade significantly, since
the primary reason that PRI-AE performs well - that it is able to
exploit regularities of the domain data - no longer applies. This
problem will not happen using Shannon’s approach, which is
independent of information source.

Nevertheless, the advantage of using a learning scheme
combined with Wiener’s perspective is that we can easily
tailor our (deep) network architecture to perform optimally
on a specific database, as we have done on MNIST. Because
Shannon’s approach requires knowledge of the noise and data
statistics for optimal transmission, we have shown that Wiener
can outperform Shannon under low SNRs in some scenarios.

Finally, it is worth nothing that, this paper is a start (or
tentative) work on the possibility of approaching Shannon limit
using learning schemes combined with Wiener’s perspective.
Quantitative measurements of information flow through PRI-
AE as well as its applicability over other data domains and
other channels remains for future works.
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