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ABSTRACT

We consider problems where one wishes to represent a parameter as-
sociated with a signal source – subject to a certain rate and distortion
– based on the observation of a number of realizations of the source
signal. By reducing these indirect vector quantization problems to
a standard vector quantization one, we provide a bound to the fun-
damental interplay between the rate and distortion in the large-rate
setting. We specialize this characterization to two particular quanti-
zation scenarios: i) the representation of the mean of a multivariate
Gaussian source; and ii) the representation of the eigen-spectrum
of a multivariate Gaussian source. Numerical results compare our
quantization approach to an approach where one recovers the param-
eters from the representation of the source signals itself: in addition
to revealing that the characterization is sharp in the large-rate setting,
the results also show that our approach offers considerable gains.

Index Terms— Signal Acquisition, Signal Parameters Acquisi-
tion, Rate-Distortion, Vector Quantization

1. INTRODUCTION

Modern signal processing systems – which manipulate digital ver-
sions of real-world analog signals – rely on analog-to-digital and
digital-to-analog converters to convert the signal from the analog to
the digital domain and vice-versa. The fundamental principles asso-
ciated with these signal acquisition and reconstruction operations are
laid out by the two seminal theories of sampling and rate-distortion.
The Shannon-Nyquist sampling paradigm asserts that it is possible
to reconstruct a continuous-time signal from its discrete-time ver-
sion provided that the signal sampling rate is at least twice the signal
bandwidth [1], whereas rate-distortion theory quantifies the trade-off
between rate and distortion associated with the digital representation
of the analog signal samples [2]. The interplay between sampling
frequency, rate and distortion has been studied in recent works [3].

Recent years have also witnessed the introduction of other signal
acquisition and reconstruction paradigms. Of particular relevance,
compressive sensing and its variants [4], [5], [6], [7], [8], [9] demon-
strate that it is possible to recover a signal from a sub-Nyquist sam-
pled version, provided that the signal admits a sparse representation
in an orthonormal dictionary (e.g. wavelet basis) or overcomplete
dictionary. See also [10].

There are however various practical applications where one does
not wish to capture the signal itself but rather a certain signal param-
eter. For example, one is often interested in the second-order statis-
tics of an underlying stochastic process in applications such as com-
munications, audio and speech processing, passive sonar and radar,
radioastronomy or seismology. This has led to a renaissance of in-

terest in various sampling approaches, such as covariance sensing
methods, that exploit structural information in the statistical domain
to capture very efficiently the relevant signal parameters [11] (see
also [12], [13], [14]). In particular, it has been shown that covariance
sensing methods can lead to substantial sampling frequency gains in
relation to schemes where the signal parameter is derived from a
conventionally sampled signal. However, these approaches assume
that the signal samples are captured perfectly, so that quantization is
not taken into account. Here, we wish to understand the fundamen-
tal trade-off between quantization rate and distortion associated with
these emerging approaches.

This paper introduces a framework to study rate-distortion trade-
offs associated with such problems, where we are only interested
in certain parameters of the signal distribution given signal sam-
ples. The contributions include a bound to the distortion-rate func-
tion (Theorem 2) and its specialization to two particular problems
(Theorems 3 and 4). The parameter-tailored rate-distortion prob-
lem is formulated in Section 2. Section 3 introduces the bound
to the distortion-rate function (applicable to the large-rate setting)
that relies on the reduction of the original indirect rate-distortion
(quantization) problem onto a surrogate direct one. Section 4 intro-
duces specializations of the bound to two problems: representation
of the mean and representation of the eigen-spectrum of a multivari-
ate Gaussian signal given a number of signal realizations. Section 5
presents a number of numerical results that showcase that parameter-
tailored signal acquisition can lead to substantial gains over other
approaches. Finally, concluding remarks are drawn in Section 6.

2. RATE-DISTORTION PROBLEM

Figure 1 illustrates the setting, where one wishes to represent a pa-
rameter associated with a signal source subject to a certain rate and
distortion, based on the observation of a number of realizations of
the source signal. This (indirect) rate-distortion setting differs from
the traditional one because the quantizer does not have direct access
to the parameter of interest itself but rather to a manifestation of the
parameter.

In particular, the encoder

f (·) : Rm × · · · × Rm →M = {1, . . . ,M} (1)

maps the signal realizations x1, . . . , xn ∈ Rm × · · · × Rm onto an
index j ∈M and the decoder

g (·) :M = {1, . . . ,M} → Rk (2)

maps the index j ∈ M onto an estimate θ̂ ∈ Rk of the true under-
lying parameter θ ∈ Rk. The operation of this encoder-decoder pair
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𝜃 Decoderx1,x2,…,xn 𝜃Encoder
f(∙) g(∙)

j∈{1,…,M}

Fig. 1. The rate-distortion setting.

will be described via an M -level (vector) quantization function as
follows:

QM(x1,. . ., xn)=g(f(x1,. . ., xn))= θ̂i, x1,. . ., xn∈Si (3)

where θ̂1, . . . , θ̂M is the reproduction alphabet and S1, . . . , SM is
a partition of Rm × · · · × Rm, i.e. ∪iSi = Rm × · · · × Rm and
Si ∩ Sj = ∅ (i 6= j).

Our goal is to provide insight into the fundamental tradeoff be-
tween the number of quantization levelsM and the quantization dis-
tortionD associated with an optimal quantizer, i.e. the quantizer that
minimizes D for a certain M . We assume a squared-error distortion
metric, so that

D = E
{
d
(
θ, θ̂
)}

= E
{
tr
(

(θ − θ̂)(θ − θ̂)t
)}

(4)

We also assume that the signal parameter θ ∈ Rk is drawn
according to the distribution pθ (θ) and that the signal realiza-
tions x1, . . . , xn ∈ Rm × · · · × Rm conditioned on the sig-
nal parameter θ ∈ Rk are drawn according to the distribution
px1,...,xn|θ(x1, . . . , xn|θ). Finaly, the quantizer knows pθ (θ) and
px1,...,xn|θ(x1, . . . , xn|θ) (but not the θ itself).

We note in passing that a straightforward approach to address
these class of problems would involve optimal encoding and decod-
ing of the signal samples, and then estimation of the parameter from
the decoded samples. It will be shown that our rate-distortion ap-
proach can lead to considerably gains in relation to this other con-
ventional approach.

3. RATE-DISTORTION TRADEOFF: ASYMPTOTIC
LARGE-RATE CHARACTERIZATION

We now provide a bound to the fundamental tradeoff between the
number of quantization levels and the quantization distortion that is
applicable to the asymptotic regime where the number of quantiza-
tion levels approaches infinity (M →∞).

Our approach relies on reduction of the original indirect quanti-
zation problem into a standard vector quantization problem, by lever-
aging a well-known result that illuminates the structure of the opti-
mal quantizer associated with squared-error distortion metrics for
indirect rate-distortion problems [15] (see also [16], [17]).

Theorem 1. [15] Let

θ̃ = θ̃(x1, . . . , xn) = E{θ|x1, . . . , xn} (5)

be the conditional mean estimate of the parameter given the signal
realizations. Let also

D̃∗ = E
{
d(θ, θ̃)

}
+ min
Q̃M (·)

E
{
d(θ̃, Q̃M (θ̃))

}
(6)

and

D∗ = min
QM (·)

E
{
d(θ,QM (x1, . . . , xn))

}
(7)

where Q̃M (θ̃) is an M -level quantizer that operates on θ̃ ∈ Rk and
QM (x1, . . . , xn) is the original M -level quantizer that operates on
x1, . . . , xn ∈ Rm × · · · × Rm. Then,

D̃∗ = D∗ (8)

Theorem 1 – which is valid for any M , n, m and k – states that
optimal quantization in the setting of Fig. 1 decomposes into two
operations:

• An estimation operation that yields the optimal mean-squared
error estimate (MSE) of the parameter given the signal real-
izations;

• A quantization operation that yields the optimal quantization
of the MSE estimate of the parameter given the signal real-
izations.

Theorem 1 also states that the minimal distortion between the source
parameter and the source parameter representation decomposes into
the sum of two components: i) The first component of the distortion
corresponds to the estimation error (i.e. minimum mean-squared er-
ror (MMSE) associated with the estimation of the source parameter
given the signal realizations); ii) The second component of the dis-
tortion corresponds to the quantization error. A similar decomposi-
tion was also identified in [3].

The characterization of the structure of the optimal quantizer
embodied in Theorem 1 leads to bound to the fundamental rate-
distortion tradeoff applicable to large-rate settings.

Theorem 2. Let

θ̃ = θ̃(x1, . . . , xn) = E{θ|x1, . . . , xn} (9)

be the conditional mean estimate of the parameter given the signal
realizations and pθ̃(θ̃) its distribution. Then, in the regime of large-
rate,

D∗ & E
{
tr
(

(θ − θ̃)(θ − θ̃)t
)}

+

+
k

k + 2
C
−2/k
k M−2/k

[∫
pθ̃(θ̃)

k
k+2 dθ̃

] k+2
k

(10)

where Ck = (2Γ(1/2)k)/(kΓ(k/2)).

Proof. This theorem follows by adapting the argument in [18]. It is
omitted for brevity.

Theorem 2 captures the interplay between the number of quan-
tization levels and distortion in the asymptotic regime of large M (it
is applicable however for any k, m and n). The estimation error –
first term on the right hand side of (10) – does not depend on the
number of quantization levels M , so it acts as a fundamental dis-
tortion plateau. In contrast, the quantization error depends on the
number of quantization levels M ; it also depends on the distribution
of the conditional mean estimate of the parameter in lieu of the dis-
tribution of the parameter itself. Note also that the estimation error
and the quantization error approach zero as n → ∞ and M → ∞,
respectively.

4. EXAMPLES

We now specialize the bound to the distortion-rate function in The-
orem 2 to concrete scenarios in order to expose fundamental limita-
tions in parameter-tailored rate-distortion problems.
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4.1. Representation of the Mean of a Multivariate Gaussian
Source

Consider a scenario where the signal realizations are drawn accord-
ing to a multivariate Gaussian distribution:

p (x1, . . . , xn|µ,Σ) =

k∏
i=1

N (xi;µ,Σ) (11)

where µ ∈ Rk and Σ ∈ Rk×k represent the mean and covariance of
the multivariate Gaussian distribution. We assume that the mean µ
is unknown to the quantizer but the covariance Σ is known. We also
assume that the mean follows a multivariate Gaussian distribution:1

p (µ) = N (µ; 0,Σµ) (12)

with zero-mean and covariance Σµ ∈ Rk×k.
The following Theorem provides a (large-rate) bound to the fun-

damental interplay between rate and distortion under the squared-
error distortion metric given by:

d (µ, µ̂) = tr
(
(µ− µ̂) · (µ− µ̂)t

)
. (13)

Theorem 3. A (high-rate) bound to the distortion-rate function as-
sociated with the representation of the mean of the Gaussian source
is given by:

D∗ &
1

n
tr

(
Σ−1 +

1

n
Σ−1
µ

)−1

+ 2πC
−2/k
k M−2/k

(
k + 2

k

) k
2

×

× det

(
Σ−1
µ +

1

n
Σ−1
µ ΣΣ−1

µ

)− 1
k

. (14)

Proof. In view of (11) and (12) it follows immediately that

p(µ|x1, . . . , xn) = N
(
µ′,Σ′

)
(15)

where µ′ =
(
Σ−1
µ + nΣ−1

)−1
Σ−1∑n

i=1 xi and Σ′ =
(
Σ−1
µ + nΣ−1

)−1.
Then, the optimal minimum MSE estimate of the parameter given
the signal realizations is given by

µ̃ =

n∑
i=1

(
Σ−1
µ + nΣ−1)−1

Σ−1xi (16)

and its distribution is given by

p(µ̃) = N

(
µ̃; 0,

(
Σ−1
µ +

1

n
Σ−1
µ ΣΣ−1

µ

)−1
)
. (17)

The result then follows immediately by using (12) and (17) in the
characterization in (10).

The first and second terms on the right hand side of (14) cor-
respond to the estimation and quantization errors, respectively. The
estimation error approaches zero as n→∞ and the error associated
with the quantization of the optimal minimum MSE estimate of the
parameter approaches the error associated with the (optimal) quanti-
zation of the parameter itself as n→∞. This is due to the fact that
– in the regime where n is large – it is possible to obtain a nearly
perfect estimate of the underlying source parameter.

The quantization error – in addition to depending on the number
of quantization levels – also depends directly on the geometric mean
of the eigenvalues of the covariance of the optimal minimum MSE
estimate (a proxy to its variability): the larger this geometric mean
the larger the quantization error (for fixed M and n).

1We choose for analytical convenience the distribution of the parameter
to be the conjugate prior to a Gaussian distribution with unknown mean and
known covariance.

4.2. Representation of the Eigen-Spectrum of a Multi-Variate
Gaussian Source

Consider now the case where the signals are again drawn according
to (11) but we now assume that the mean µ is known but the covari-
ance Σ = UΛU t is such that U is known and Λ is unknown. Here,
U ∈ Rk×k is an orthogonal matrix that contains the eigenvectors
of Σ and Λ = diag(λ1, . . . , λk) ∈ Rk×k is a diagonal matrix that
contains the eigenvalues of Σ. 2 We also assume that the eigenvalues
follow the distribution: 3

p (λ1,. . ., λk)=

k∏
i=1

IG (λi;αi, βi) (18)

with αi > 2, ∀i, where IG (·;α, β) represents the inverse-gamma
distribution with shape parameter α and scale parameter β.

The following Theorem provides a (large-rate) bound to the fun-
damental interplay between rate and distortion under the squared-
error distortion metric:

d
(

Λ, Λ̂
)

= tr

((
Λ− Λ̂

)
·
(

Λ− Λ̂
)t)

=

k∑
i=1

(
λi − λ̃i

)2
. (19)

Theorem 4. A (high-rate) bound to the distortion-rate function as-
sociated with the representation of the eigen-spectrum of the Gaus-
sian source is given by:

D∗ &
k∑
i=1

βi
αi − 1 + n/2

· βi
(αi − 1) (αi − 2)

+
k

k + 2
C
−2/k
k M−2/k×

×
k∏
i=1

β2
i

(αi − 1 + n/2)2
·
B
k+2
k

(
kαi−2
k+2

, kn/2+2
k+2

)
B (αi, n/2)

. (20)

where B(·, ·) represents the beta function.

Proof. In view of (11) and (18) it follows immediately that

p(λ1, . . . , λk|x1, . . . , xn) =

k∏
i=1

IG
(
λk;α′k, β

′
k

)
(21)

whereα′k = αk+n
2

and β′k = βk+ 1
2
etkU

t
(∑n

i=1 (xi − µ) (xi − µ)t
)
Uek.

Then, the optimal minimum MSE estimate of the unknown parame-
ters are given by(

λ̃1, . . . , λ̃k
)

=

(
β′1

α′1 − 1
, . . . ,

β′k
α′k − 1

)
(22)

and its distribution is given by

p
(
λ̃1, . . . , λ̃k

)
=

k∏
i=1

1

B(αi, n/2)
×

× 1

δi
×
(
λ̃i − δi
δi

)n
2
−1

×
(

1 +
λ̃i − δi
δi

)−n
2
−αi

(23)

with λ̃1 ≥ δ1, . . . , λ̃k ≥ δk, where δi = βi/(αi + n/2 − 1).
The result follows by using (18) and (23) in the characterization in
(10).

2Note that this applies to scenarios where one has additional structural in-
formation about the covariance matrix. For example, if the covariance matrix
is known to be circulant, then U is a DFT matrix.

3We again choose for analytical convenience the distribution of the pa-
rameter to be the conjugate prior to a Gaussian distribution with known mean,
known eigenvectors and unknown eigenvalues.
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(a)

(b)

Fig. 2. Evaluation of the encoding of the (a) mean and the (b) eigen-
spectrum of a multivariate Gaussian distribution.

The first and second terms on the right hand side of (20) also
correspond to the estimation and quantization errors, respectively.
It is clear that the estimation error tends to zero as the number of
signal realizations tends to infinity and – in view of the fact that
B(x, y) ∼ Γ(y)x−y for x large and y fixed – the quantization error
tends to:

k

k + 2
C
−2/k
k M−2/k

k∏
i=1

β2
i

Γ
(
kαi−2
k+2

)
Γ(αi)

(
k

k + 2

)− kαi−2
k

(24)

as the number of signal realizations tends to infinity, i.e. the quan-
tization error approaches the error associated with the direct quan-
tization of the source eigen-spectrum itself. In addition, the quanti-
zation error increases with the increase of the scale parameter (for
a fixed M and n), in view of the fact that this parameter measures
the variability of the inverse-gamma random variable (recall that the
variance of an inverse-gamma random variable grows quadratically
with the scale parameter β for fixed α).

5. RESULTS

We conduct experiments to compare our approach, where one en-
codes the MMSE estimate of the parameter using log2M bits,
against the approach where the encoder encodes n samples into
n log2M bits and the decoder recovers the parameter from the

quantized samples. In our experiments we fix the dimensionality of
the source samples to k = 2 and consider n = 100 or n = 1000
signal samples.

In the first set of experiments, we consider the encoding of the
mean of a multivariate Gaussian distribution. We generate µ values
according to (12), where Σµ = J × JT and J ∈ (0, 1)k×k is a ma-
trix of which the entries are uniformly-distributed random numbers
in (0, 1). Per µ value, we generate n source samples (x1, . . . , xn)
according to (11), where Σ is drawn similarly to Σµ. Adhering to our
approach, we derive the MMSE estimate µ̃ of the mean using (16)
and encode it using an M level vector quantizer, trained using the
LBG algorithm [19] on the distribution given in (17). In the alterna-
tive approach, each source sample is first quantized with an M -level
vector quantizer4 that is trained for samples following (11). At the
decoder the parameter is estimated via the sample mean of the re-
covered data samples. It is worth mentioning that, in the second
approach, one needs to train a quantizer per trial (corresponding to
each mean value µ), meaning that, in practice, the obtained code-
book needs to be communicated to the decoder (this extra rate is
even not taken into account in our results).

In the second set of experiments, we consider the encoding of
the eigen-spectrum of a multivariance Gaussian source. The setup
is similar to the previous one: we draw a k-dimensional eigenvalue
vector according to (18), where U is equal to the identity matrix and
αi ∈ (5, 6) and βi ∈ (0.33, 0.5), k = {1, 2}, drawn uniformly at
random. Given n generated source samples, we encode either the
MMSE estimate [calculated via (22)] or the samples.

Figure 2 presents the performance of the two approaches in
terms of the rate (in bits) versus the MSE distortion—presented in
a logarithmic scale—, both averaged over 200 Monte-Carlo trials.
It can be observed that quantization of the underlying parame-
ter can lead to substantially lower distortions than quantization of
the samples themselves. It can also be observed that the derived
characterization is sharp in the high-rate regime, thereby providing
the means to gauge the rate-distortion tradeoff associated with our
approach.

6. CONCLUSION

Emerging problems in signal acquisition involve the representation
of parameters associated with a signal source based on the obser-
vation of a number of realizations of the source signal, subject to a
certain rate and distortion.

This paper provides a bound to the fundamental interplay be-
tween rate and distortion for this indirect quantization problems that
is applicable to the large-rate regime. This characterization—which
is also specialized to two concrete settings—states that the distortion
consists of two components: one component corresponds to the er-
ror associated with the estimation of the parameter from the samples
and the other component is associated with the error associated with
the quantization of the parameter estimate itself.

Numerical results demonstrate that this quantization approach
can lead to marked gains over an alternative approach where the
parameter is estimated directly from the quantized signal samples;
moreover, the results also reveal that the characterizations are sharp
in the large-rate regime, providing the means to gauge a rate to
achieve a certain target distortion for this new class of signal ac-
quisition problems.

4The source sample quantizer is different from the quantizer for the
MMSE estimate. The training is performed using the LGB algorithm [19].
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