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ABSTRACT
Universal compressed sensing algorithms recover a “struc-

tured” signal from its under-sampled linear measurements,
without knowing its distribution. The recently developed
minimum entropy pursuit (MEP) optimization suggests a
framework for developing universal compressed sensing al-
gorithms. In the noiseless setting, among all signals that sat-
isfy the measurement constraints, MEP seeks the “simplest”.
In this work, the effect of noise on the performance of the
relaxed version of MEP optimization, namely Lagrangian-
MEP, is studied. It is proved that the performance the
Lagrangian-MEP algorithm is robust to small additive noise.

Index Terms—Universal coding, mixing processes, informa-
tion dimension, compressed sensing

I. INTRODUCTION

Solving under-determined linear inverse problems has
drawn considerable attention in recent years, do to its appear-
ance in many important applications such as high-resolution
magnetic resonance imaging (MRI) and high resolution radar
imaging. The fundamental problem in all these applications
is to estimate a signal Xn ∈ Rn from its noisy linear
projections Y m = AXn + Zm, where m is desired to be
much smaller than n. Here A ∈ Rm×n denotes the sensing
matrix and Zm denotes the measurement noise.

Clearly, for Xn to be recoverable from Y m = AXn+Zm,
where m� n, the signal Xn cannot be any arbitrary signal
and needs to be “structured”. Luckily, this is the case in
the majority of applications. In other words, in most cases
the desired signal does not resemble memoryless noise.
Starting by sparsity in a transform domain [2], [3], and
then moving beyond sparsity to structures such as group-
sparsity and low-rankness, in recent years, researchers in the
area of compressed sensing have investigated the problem of
“structured signal recovery” and its implications.

While many natural signals comply with the simple struc-
tures that are studied in the compressed sensing literature,
they often follow much more elaborate patterns as well.

An extended version of this paper [1] has been submitted to the IEEE
Transaction on Information Theory and is under review. This research was
supported in part by the U. S. National Science Foundation under Grant
CCF-1420575.

Taking advantage of such complex patterns can potentially
lead to efficient sensing systems that require dramatically
fewer measurements m. However, achieving this goal using
traditional approaches is challenging. The reason is that,
following such methods, for each new type of structure, a
new cost function needs to be developed that both enforces
that special type of structure and also leads to efficient
optimization.

A fundamentally different route towards exploiting com-
plex structures present in a signal is through “universal”
coding. In information theory, an algorithm is called “uni-
versal”, if it is not designed for a specific source distribution
and yet it achieves the optimal performance. That is, a
universal algorithm, without knowing the source distribution,
asymptotically achieves the best performance achievable by
Bayesian algorithms that are aware of the source model.
Such codes are well-studied in information theory for differ-
ent applications such as compression [4]–[8], denoising [9],
[10] and prediction [11], [12].

In recent years, universal compressed sensing has been
the subject of different studies [13]–[18]. In [13], [15] and
[16] the authors studied the problem of universal compressed
sensing of deterministic signals and proposed a universal
recovery algorithm based on Kolmogorov complexity, which
is known to be non-computable [19]. In [14] and [17], the au-
thors studied the problem of maximum a posteriori probabil-
ity (MAP) estimation of Xn from Y m = AXn+Zm, where
Zm denotes an additive white Gaussian noise (AWGN).
Inspired by [9], considering a universal prior for Xn [19],
the authors proposed a universal recovery algorithm, conjec-
turing that its mean square error (MSE) performance is two
times that of an optimal Bayesian estimator.

The problem of universal compressed sensing of stochas-
tic processes was studied in [18], for the case in which
there is no measurement noise in the system. For almost
lossless recovery of independent and identically distributed
(i.i.d.) sources, it was shown that the proposed minimum
entropy pursuit (MEP) optimization and its relaxed version,
Lagrangian-MEP, achieve the minimum required normalized
number of measurements (n/m) [20]. In this paper, we study
the performance of the Lagrangian-MEP algorithm, which is
in fact is the same algorithm proposed in [14], for the noisy
setting. In the small noise regime, we prove the robustness
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of the algorithm. We also derive an upper bound on the error
for the case in which measurements are distorted by AWGN.

The organization of the paper is as follows. Section II
introduces the notation used in the paper and reviews some
related background. In Section III, the MEP optimization and
its Lagrangian relaxation are reviewed. Section IV presents
the main results of the paper, which are on the performance
of the Lagrangian-MEP algorithm in the presence of noise.
The proof of Theorem 3 is presented in Appendix A, and
the proof of Theorem 4 is given in an extended version of
the paper [1].

I-A. Notation
Given (x1, . . . , xn) ∈ Rn, and i ≤ j ∈ {1, . . . , n}, xji ,

(xi, . . . , xj). For i = 1, xj1 is simply denoted as xj . Given
xn, yn ∈ Rn, ‖xn − yn‖1 ,

∑n
i=1 |xi − yi|.

Given x ∈ R, let bxc denote the largest integer smaller
that x. By this definition, 0 ≤ x − bxc < 1, and therefore
x−bxc =

∑∞
i=1 ai2

−i, where, for i = 1, 2, . . ., ai ∈ {0, 1}.
We define the b-bit quantized version of x, [x]b, as [x]b =
bxc+

∑b
i=1 ai2

−i. For xn ∈ Rn, [xn]b = ([x1]b, . . . , [xn]b).
Given a set X ⊂ R, let Xb , {[x]b : x ∈ X}. Throughout
the paper, for x ∈ R+, lnx and log x refer to the natural
logarithm of x and its logarithm in base 2, respectively.

II. BACKGROUND

In this section, we review some fundamental concepts that
will be needed in our presentation and analysis of MEP
optimization for universal compressed sensing.

II-A. Conditional empirical entropy
The entropy rate of a stationary process U =

{Ui}∞i=1, with finite alphabet U , is defined as H̄(U) ,
limn→∞

H(U1,...,Un)
n . The entropy rate function H̄(·) is a

well-known measure of complexity for finite-alphabet pro-
cesses. Given Un generated by the stationary ergodic process
U, there are various ways to estimate H̄(U). One such
method is using the conditional empirical entropy function.
The k-th order empirical distribution induced by un ∈ Un,
p̂k(.|un), is defined as

p̂k(ak|un) =
|{i : ui−1

i−k = ak, k + 1 ≤ i ≤ n}|
n− k

,

for all ak ∈ Uk.

Definition 1 (Conditional empirical entropy). The k-th order
conditional empirical entropy of un ∈ Un, Ĥk(un), is
defined as H(Vk+1|V k), where V k+1 ∼ p̂k+1(·|un).

II-B. Information dimension
As discussed earlier, compressed sensing, i.e., recovering a

vector Xn from Y m = AXn+Zm, with m < n, is only pos-
sible if the source is “structured”. Unlike discrete-alphabet
processes, the entropy function cannot be used to distinguish

between structured (low-complexity) and unstructured (high-
complexity) continuous-alphabet processes. All such sources
have infinite entropy rate. In order to develop a similar
measure of complexity for continuous-alphabet processes,
in [18], Rényi’s notion of information dimension (ID) for
random variables and random vectors [21] was extended to
stationary processes. In the rest of this section, we briefly
review this measure.

Definition 2 (ID of a stationary process). The k-th order
upper ID of a stationary process X = {Xi}∞i=1 is defined
as

d̄k(X) = lim sup
b→∞

H([Xk+1]b|[Xk]b)

b
.

Similarly, the k-th order lower ID of X is defined as
dk(X) = lim infb→∞

H([Xk+1]b|[Xk]b)
b . The upper (lower)

ID of X, d̄o(X) (do(X)), is defined as d̄o(X) =
limk→∞ d̄k(X) (do(X) = limk→∞ dk(X)), when this limit
exists. If d̄o(X) = do(X), then the ID of X, do(X), is
defined as do(X) = d̄o(X) = do(X).

As argued in [18], the ID of a process is a measure of its
structuredness and has close connections to the problem of
compressed sensing. (Refer to [1] for the evaluation of the
IDs of several structured processes.)

II-C. Mixing processes

As discussed above, the ID of a stationary continuous-
valued process X = {Xn}∞−∞ serves as a measure of
complexity for processes. However, in order to develop a
universal compressed sensing algorithm, we need to be able
to somehow distinguish between unstructured and structured
sequences. Therefore, similar to finite-alphabet sources, an
estimator of the ID of a stationary process is a reason-
able candidate for a general measure of complexity for
continuous-alphabet sequences. To be able to develop such
an estimator, [18] imposed a mixing condition on the source
process, which requires sufficiently-spaced future and past
of the process to be almost independent of each other.

Given stationary process X and j ≤ k, let Fkj denote
the σ-field of events generated by Xk

j . Then, the function
ψ∗ : N→ R+ is defined as

ψ∗(g) = sup
P(A ∩ B)

P(A) P(B)
,

where the supremum is taken over all events A ∈ F j−∞ and
B ∈ F∞j+g , such that P (A) > 0 and P(B) > 0.1

Definition 3 (ψ∗-mixing processes). A stationary process X
is called ψ∗-mixing, if limg→∞ ψ∗(g) = 1.

Some examples of ψ∗-mixing include memoryless
sources, aperiodic finite-alphabet Markov chains and moving

1For more information on ψ∗-mixing, and its connection to other mixing
conditions, the reader is referred to [22].
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averages of i.i.d. processes. The following result proved in
[18] shows that the k-th order empirical distribution of the
quantized version of a sequence Xn generated by a ψ∗-
mixing process X converges to the k-th order distribution
of the quantized process [X]b = {[Xi]b}. This result is an
important tool that is used in all of the following theorems
on the performance of MEP optimization.

Theorem 1. Consider a ψ∗-mixing process X, with contin-
uous alphabet X . Then, for any ε > 0, there exists g ∈ N,
depending only on ε, such that for any n > 6(k+ g)/ε+ k,

P(‖p̂k(·|[Xn]b)− µk‖1 ≥ ε) ≤ 2cε
2/8(k+ g)n|Z|

k

2−
ncε2

8(k+g) ,

where c = 1/(2 ln 2). Here, for ak ∈ X kb , µk(ak) =
P([Xk]b = ak).

III. MINIMUM ENTROPY PURSUIT
A universal compressed sensing decoder estimates Xn

from observations Y m = AXn, without knowing the
source distribution. The (upper) ID of a process X,
d̄o(X) = limk→∞ lim supb→∞H([Xk+1]b|[Xk]b)/b, cap-
tures the level of structuredness of process X. This suggests
that, given an individual sequence xn ∈ Xn, Ĥk([xn]b)/b
might serve as a good candidate to measure the complexity
of xn. Based on this intuition and Occam’s razor, MEP
optimization proposed in [18] estimates Xn as the sequence
that satisfies the measurements constraints and among all
such sequences minimizes Ĥk([xn]b)/b. In other words,

X̂n
MEP = arg min

xn: Axn=Ym
Ĥk([xn]b).

Note that this is a very challenging optimization problem
to solve, since it is requires minimizing a discrete cost
function over continuous variables. In order to derive a more
manageable optimization, [18] considered the Lagrangian
relaxed version of MEP, in which the optimization is now
over a discrete set. More precisely,

X̂n
L−MEP = arg min

un∈Xnb

(
Ĥk(un) +

λ

n2
‖Aun − Y m‖22

)
. (1)

To evaluate the performance of this algorithm, there are
three parameters that need to be specified: i) k (memory
parameter), ii) b (quantization level) and iii) λ (regularization
coefficient).

Theorem 2. Consider a ψ∗-mixing stationary process X =
{Xi}∞i=1, with X = [0, 1] and upper information dimension
d̄o(X). Choose r > 1 and δ > 0, and let b = bn =
dr log log ne, k = kn = o( logn

log logn ), λ = λn = (log n)2r

and m = mn ≥ (1 + δ)d̄o(X)n. Also, let the entries of
A ∈ Rm×n be drawn i.i.d. N (0, 1). Given Xn generated by
the source X and Y m = AXn, let X̂n

MEP = X̂n
MEP(Y m, A)

denote the solution of (1). Then, as n→∞,

1√
n
‖Xn − X̂n

MEP‖2
P−→ 0.

For i.i.d. sources with a mixed discrete and continuous
distribution, Theorem 2 proves that in the noiseless setting
there is no loss in the performance due to universality. In
other words, in such a setting, asymptotically, Lagrangian-
MEP is successful as long as m/n exceeds the ID of the
source, which is the fundamental limit of m/n in Bayesian
compressed sensing [20], [23].

It turns out that (1) is the same optimization derived in
[17] for MAP estimation of Xn from Y m = AXn + Zm,
using a universal prior on Xn and an AWGN Zm.

IV. ROBUSTNESS OF MEP TO NOISE

In almost all practical situations measurements are con-
taminated by noise. Therefore, it is important to study the
performance of the Lagrangian-MEP algorithm in the pres-
ence of the measurement noise. In this section, we explore
the effect of noise on the Lagrangian-MEP algorithm. We
consider two types of noise: i) small noise, where the noise
power per measurement goes to zero, ii) normal noise,
where the noise is AWGN and has a constant power. In the
small noise regime, we prove that the performance of the
Lagrangian-MEP algorithm is robust to measurement noise.
For the normal noise regime, given the noise power, we char-
acterize the trade-off between the number of measurements
and the reconstruction error per symbol.

Assume that instead of AXn, the decoder observes
Y m = AXn + Zm, where Zm denotes the noise in the
measurement system. The decoder employs the Lagrangian-
MEP algorithm to recover Xn, i.e.,

X̂n = arg min
un∈Xnb

(
Ĥk(un) +

λ

m
‖Aun − Y m‖22

)
. (2)

By comparing (1) and (2), it can be observed that in (2) the
coefficient multiplied by ‖Aun−Y m‖22 is changed from λ

n2

to λ
m . The reason for this modification is that throughout

this section, the entries of the matrix A are assumed to be
i.i.d. N (0, 1

n ), instead of N (0, 1). While in the noiseless
setting the variance of the entries of A does not have
an impact on the performance, in the noisy setting, this
power affects the signal to noise ratio (SNR) experienced by
the measurements. Drawing the entries of A i.i.d. N (0, 1

n )
ensures a fixed SNR per measurement that does not grow
with n.

The following theorem asserts that Lagrangian-MEP is
robust to measurement noise, and as long as the `2 norm
of the noise vector is small enough, the algorithm recovers
the source vector from the same number of measurements,
despite receiving noisy observations.

Theorem 3. Consider Xn generated by a ψ∗-mixing station-
ary process X = {Xi}∞i=1, with X = [0, 1] and upper ID
d̄o(X). Assume that we observe Y m = AXn + Zm, where
A ∈ Rm×n is i.i.d. N (0, 1

n ), and there exists a deterministic
sequence cm such that lim

m→∞
P( 1√

m
‖Zm‖2 > cm) = 0,
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and cm = O( 1
(logm)r ). Given r > 1 and δ > 0, let

b = bn = dr log log ne, k = kn = o( logn
log logn ), λ = λn =

(logm)2r and m = mn ≥ (1 + δ)d̄o(X)n. Further let
X̂n

L−MEP = X̂n
L−MEP(Y m, A) denote the solution of (2).

Then, 1√
n
‖Xn − X̂n‖2

P−→ 0, as n→∞.

The following result considers the case in which the mea-
surements are distorted by i.i.d. Gaussian noise. It suggests
an alternative choice of the coefficient λ, which depends on
the noise power and the source complexity. For this choice
of the parameter λ, it characterizes the trade-off between the
number of measurements and the per-symbol reconstruction
error.

Theorem 4. Consider a ψ∗-mixing stationary process X =
{Xi}∞i=1, with X = [0, 1] and upper ID d̄o(X). Given δ > 0,
w > 0, τ ∈ (0, 1) and r > 1, let b = bn = dr log log ne,
k = kn = o( logn

log logn ), λ = λn = wd̄o(X)bn
σ2 , and m = mn ≥

4
τ2 log e (1+w+δ)d̄o(X)bnn. We observe Y m = AXn+Zm,
where Xn is generated by the source X, the entries of A are
i.i.d. N (0, 1

n ) and Zi, i = 1, . . . ,m, are i.i.d. N (0, σ2). Let
X̂n

L−MEP = X̂n
L−MEP(Y m, A) denote the solution of (1).

Then,

P
( 1√

nσ2
‖Xn − X̂n

L−MEP‖2 >

2

1− τ

√
2(1 + δ

8w )(1 + w + δ)d̄on

m
+

√
1 + δ

2

(1− τ)w
+ δ

)
converges to zero, as n grows to infinity.

V. DISCUSSION

Theorems 3 and 4 characterize the performance of the
Lagrangian-MEP algorithm in the presence of noise. The-
orem 3 asserts that Lagrangian-MEP is a robust universal
compressed sensing algorithm for almost lossless recovery,
where the noise is small. Theorem 4 provides a probabilistic
upper bound on the average per-symbol reconstruction error,
but it does not prove the optimality or sub-optimality of the
Lagrangian-MEP optimization, in the noisy setting.

APPENDIX
PROOF OF THEOREM 3

Throughout the proof, for ease of notation, d̄o(X) and
X̂n

L−MEP are denoted by d̄o and X̂n, respectively. Let
qn , Xn − [Xn]b, ε > 0, τ > 0 and Cn , {[xn]b :
1
nb`LZ([xn]b) ≤ d̄o + 3ε}, where `LZ(un) denotes the
length of the compressed version of un using the Lempel-
Ziv compression algorithm [4]. Let σmax(A) denote the
maximum singular value of matrix A. Define events E1 ,{
σmax(A) ≤ 1 + 2

√
m
n

}
, E2 , { 1

b Ĥk([Xn]b) ≤ d̄o + ε},

E3 , {‖A(un − [Xn]b)‖2 ≥ ‖un − [Xn]b‖2
√

(1−τ)m
n :

∀un ∈ Cn}, and E4 , { 1√
m
‖Zm‖2 ≤ cm}.

Since X̂n is the minimizer of the cost function in (1), we
have

Ĥk(X̂n)+
λ

m
‖AX̂n−Y m‖22 ≤ Ĥk([Xn]b)+

λ

m
‖Aqn+Zm‖22.

But ‖Aqn+Zm‖22 ≤ ‖Aqn‖22+‖Zm‖22+2‖Aqn‖2‖Zm‖2 ≤
(σmax(A))2‖qn‖22 +‖Zm‖22 +2σmax(A)‖qn‖2‖Zm‖2. Since
‖qn‖2 ≤

√
n2−b and m ≤ n, conditioned on E1 ∩ E2 ∩ E4,

we get

Ĥk(X̂n) +
λ

m
‖AX̂n − Y m‖22

≤ Ĥk([Xn]b) +
λ

m

(
(1 + 2

√
m

n
)2n2−2b+

mc2m + 2
√
mcm(1 + 2

√
m

n
)
√
n2−b

)
≤ b(d̄o + ε) + λ

(9n

m
(2−2b) + c2m + 6cm

√
n

m
2−b
)
.

(A.3)

Dividing both sides of (A.3) by b, it follows that

1

b
Ĥk(X̂n) +

λ

bm
‖AX̂n − Y m‖22

≤ d̄o + ε+
λ

b

(9n

m
(2−2b) + c2m + 6cm

√
n

m
2−b
)
. (A.4)

By the theorem’s assumption, λ = λn = (logm)2r,
b = bn = dr log log ne and m = mn ≥ (1 + δ)d̄on. For this
choice of the parameters, λn

b22bm
≤ 1

(1+δ)d̄or log logn
, λc2m

b ≤
((logm)rcm)2

r log logn , and finally λcm
b2b

√
n
m ≤

cm(logm)r

r(log logn)
√

(1+δ)d̄o
.

Therefore, since cm = O( 1
(logm)r ), for all n large enough,

λ
b ( 9n

m (2−2b) + c2m + 6cm
√

n
m2−b) < ε. Hence, from (A.4),

for all n large enough, conditioned on E1 ∩ E2 ∩ E4,
Ĥk(X̂n) ≤ d̄o(1 + 2ε) and λ

m‖AX̂
n − Y m‖22 ≤ d̄o(1 + 2ε).

On the other hand, by the triangle inequality, ‖AX̂n −
Y m‖2 ≥ ‖A(X̂n −Xn)‖2 − ‖Zm‖2, and hence ‖A(X̂n −
Xn)‖2 ≤ ‖AX̂n − Y m‖2 + ‖Zm‖2. Therefore,

‖A(X̂n −Xn)‖2 ≤
√

(d̄o + 2ε)bm

λ
+ cm

√
m

≤
√
bm

λ

(√
d̄o + 2ε+

√
c2m(logm)2r

r log log n

)
.

But again since cm = O( 1
(logm)r ),

√
c2m(logm)2r

r log logn can be
made arbitrarily small, for all n large enough. On the other
hand conditioned on E1 ∩ E2 ∩ E3 ∩ E4, for all n large

enough, ‖A(X̂n − [Xn]b)‖2 ≥ ‖X̂n − [Xn]b‖2
√

(1−τ)m
n .

Combining this lower bound by the just derived upper bound
on ‖A(X̂n − Xn)‖2 establishes the desired result. The
remaining step is to show that P(E1 ∩ . . . ∩ E4) → 1, as
n → ∞. This can be done following steps similar to those
used in the proof of Theorem 8 in [1].
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