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ABSTRACT

Information theoretic measures (e.g. the Kullback Liebler diver-
gence and Shannon mutual information) have been used for explor-
ing possibly nonlinear multivariate dependencies in high dimension.
If these dependencies are assumed to follow a Markov factor graph
model, this exploration process is called structure discovery. For
discrete-valued samples, estimates of the information divergence
over the parametric class of multinomial models lead to structure
discovery methods whose mean squared error achieves paramet-
ric convergence rates as the sample size grows. However, a naive
application of this method to continuous nonparametric multivari-
ate models converges much more slowly. In this paper we intro-
duce a new method for nonparametric structure discovery that uses
weighted ensemble divergence estimators that achieve parametric
convergence rates and obey an asymptotic central limit theorem that
facilitates hypothesis testing and other types of statistical validation.

Index Terms— mutual information, structure learning, ensem-
ble estimation, hypothesis testing

1. INTRODUCTION

Information theoretic measures such as mutual information (MI) can
be applied to measure the strength of multivariate dependencies be-
tween random variables (RV). Such measures are used in many ap-
plications including determining channel capacity [1], image regis-
tration [2], independent subspace analysis [3], and independent com-
ponent analysis [4]. MI has also been used for structure learning in
graphical models (GM) [5, 6], which are factorizable multivariate
distributions that are Markovian according to a graph, called a fac-
tor graph, where edges between pairs of vertices represent pairwise
dependencies [7]. GMs have been used in fields such as bioinfor-
matics, image processing, control theory, social science, and mar-
keting analysis. However, structure learning for GMs remains an
open challenge since the most general case requires a combinatorial
search over the space of all possible structures [8,9] and nonparamet-
ric approaches have poor convergence rates as the number of sam-
ples increases. This prevents reliable application of nonparametric
structure learning except for impractically large sample sizes. This
paper proposes a nonparametric MI-based ensemble estimator for
structure learning that achieves the optimal parametric mean squared
error (MSE) rate of O(1/N) (where N is the sample size) when the
densities are sufficiently smooth and admits a central limit theorem
(CLT), which enables us to perform hypothesis testing. We demon-
strate this estimator in multiple structure learning experiments.

∗The research in this paper was partially supported by grant W911NF-15-
1-0479 from the US Army Research Office.

Several structure learning algorithms have been proposed for
parametric GMs including discrete Markov random fields [10],
Gaussian GMs [11], and Bayesian networks [12]. Recently, the au-
thors of [13] proposed learning latent variable models from observed
samples by estimating dependencies between observed and hidden
variables. Numerous other works have demonstrated that latent tree
models can be learned efficiently in high dimensions (e.g. [14, 15]).

We focus on two methods of nonparametric structure learning
based on ensemble MI estimation. The first method is the Chow-Liu
(CL) algorithm which constructs a first order tree from the MI of all
pairs of RVs to approximate the joint pdf [5]. Since structure learn-
ing approaches can suffer from performance degradation when the
model does not match the true distribution, we propose hypothesis
testing via MI estimation to determine how well the tree structure
imposed by the CL algorithm approximates the joint distribution.
The second method learns the structure by performing hypothesis
testing on the MI of all pairs of RVs. An edge is assigned between
two vertices (RVs) if the MI is statistically different from zero.

Accurate MI estimation is necessary for both methods. Esti-
mating MI is often difficult, especially in high dimensions when
there is no parametric model for the data. Nonparametric methods
of estimating MI have been proposed including k-nearest neighbor
based methods [16, 17] and minimal spanning trees [18]. However,
the MSE convergence rates of the latter estimator are currently un-
known, while the k-nn based methods achieve the parametric rate
only when the dimension of each of the RVs is less than 3 [19].

Recent work has focused on the more general problem of non-
parametric divergence estimation including approaches based on op-
timal kernel density estimators (KDE) [20–22] and ensemble meth-
ods [23–26]. While the optimal KDE-based approaches can achieve
the parametric MSE rate for smooth densities (i.e. the densities are at
least d [21] or d/2 [20,22] times differentiable where d is the dimen-
sion of the data), they can be difficult to construct near the density
support boundary and they require knowledge of the boundary. Also,
for some types of divergence functionals, these approaches require
numerical integration which is computationally difficult.

In contrast, the divergence and entropy ensemble estimators
in [23–26] vary the neighborhood size of nonparametric density
estimators to construct an ensemble of simple plug-in divergence or
entropy estimators. The final estimator is a weighted average of the
ensemble of estimators where the weights are chosen to decrease
the bias with only a small increase in the variance. Specifically,
the ensemble estimator in [26] achieves the parametric MSE rate
without any knowledge of the densities’ support set when the den-
sities are (d + 1)/2 times differentiable. In this paper, we extend
these ensemble estimation approaches to MI estimation for struc-
ture learning. We do this by deriving expressions for the bias and
variance of simple plug-in MI estimators and then apply the theory
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of optimally weighted ensemble estimation to obtain MI estimators
that achieve the parametric MSE rate.

2. FACTOR GRAPH LEARNING

This paper focuses on learning a second-order product approxima-
tion (i.e. a dependence tree) of the joint probability distribution of
the data. Let X(i) denote the ith component of a d-dimensional ran-
dom vector X. We approximate the joint probability density p(X)
as a product of marginal (first-order) and conditional (second-order)
probability densities denoted as p′ (X). The CL algorithm [5] pro-
vides an information theoretic method for selecting the second-order
terms in p′ (X). It chooses the second-order terms that minimize the
Kullback-Leibler (KL) divergence between the joint density p(X)
and the approximation p′(X). This reduces to constructing the max-
imal spanning tree where the edge weights correspond to the MI
between the RVs at the vertices of the factor graph [5].

While the sum of the pairwise MI gives a measure of the qual-
ity of the approximation, it does not indicate if the approximation
is a sufficiently good fit or whether a different model should be
used. This problem can be framed as testing the hypothesis that
p′(X) = p(X) at a prescribed false positive level. This test can be
performed using MI estimation. We also propose that p′ (X) can be
learned by performing hypothesis testing on the MI of all pairs of
RVs and assigning an edge between two vertices (RVs) if the MI is
statistically different from zero. To account for the multiple compar-
isons bias, we control the false discovery rate (FDR) [27].

3. MUTUAL INFORMATION ESTIMATION

Information theoretic methods for learning nonlinear structures re-
quire accurate estimation of MI and estimates of its sample distribu-
tion for hypothesis testing. In this section, we extend the ensemble
divergence estimators given in [26] to obtain an accurate MI estima-
tor and use the CLT to justify a large sample Gaussian approximation
to the sampling distribution. We consider general MI functionals.
Let g : (0,∞) → R be a smooth functional, e.g. g(u) = lnu for
Shannon MI or g(u) = uα, with α ∈ [0, 1], for Rényi MI. Then the
pairwise MI between X(i) and X(j) can be defined as

Gij =

∫
g

p
(
x(i)
)
p
(
x(j)

)
p (x(i), x(j))

 p
(
x(i), x(j)

)
dx(i)dx(j). (1)

For hypothesis testing, we are interested in the following

G
(
p; p′

)
=

∫
g

(
p′(x)

p(x)

)
p(x)dx. (2)

In this paper we focus only on the case where the RVs are con-
tinuous with smooth densities. To extend the method of ensemble
estimation in [26] to MI, we 1) define simple KDE-based plug-in
estimators, 2) derive expressions for the bias and variance of these
base estimators, and 3) then take a weighted average of an ensem-
ble of these simple plug-in estimators to decrease the bias based on
the expressions derived in step 2). To perform hypothesis testing
on the estimator of (2), we invoke the CLT to specify the likelihood
ratio and decision threshold. Note that we cannot simply extend
the divergence estimation results in [26] to MI as [26] assumes that
the random variables from different densities are independent, which
may not be the case for (1) or (2).

We first define the plug-in estimators. The conditional prob-
ability density is defined as the ratio of the joint and marginal

densities. Thus the ratio within the g functional in (2) can be
represented as the ratio of the product of some joint densities
with two random variables and the product of marginal densi-
ties in addition to p. For example, if d = 3 and p′(X) =

p
(
X(1)|X(2)

)
p
(
X(2)|X(3)

)
p
(
X(3)

)
, then

p′(X)

p(X)
=
p
(
X(1),X(2)

)
p
(
X(2),X(3)

)
p (X(2)) p (X(1),X(2),X(3))

. (3)

For the KDEs, assume that we haveN i.i.d. samples {X1, . . . ,XN}
available from the joint density p (X). The KDE of p(Xj) is

p̃X,h(Xj) =
1

Mhd

∑
i=1
i6=j

K

(
Xj −Xi

h

)
,

where K is a symmetric product kernel function, h is the band-
width, and M = N − 1. Define the KDEs p̃ik,h

(
X

(i)
j ,X

(k)
j

)
and

p̃i,h
(
X

(i)
j

)
(for p

(
X

(i)
j ,X

(k)
j

)
and p

(
X

(i)
j

)
, respectively) sim-

ilarly. Let p̃
′
X,h(Xj) be defined using the KDEs for the marginal

densities and the joint densities with two random variables. For ex-
ample, in the example given in (3), we have

p̃
′
X,h(Xj) =

p̃12,h

(
X

(1)
j ,X

(2)
j

)
p̃23,h

(
X

(2)
j ,X

(3)
j

)
p̃2,h

(
X

(2)
j

) .

For brevity, we use the same bandwidth and product kernel for each
of the KDEs although our method generalizes to differing band-
widths and kernels. The plug-in MI estimator for (2) is then

G̃h =
1

N

N∑
j=1

g

(
p̃

′
X,h(Xj)

p̃X,h(Xj)

)
.

The plug-in estimator G̃h,ij for (1) is defined similarly.
To apply bias-reducing ensemble methods similar to [26] to the

plug-in estimators G̃h and G̃h,ij , we need to derive their MSE con-
vergence rates. As in [26], we assume that 1) the density p(X) and
all other marginal densities and pairwise joint densities are s ≥ 2
times differentiable and the functional g is infinitely differentiable;
2) p(X) has bounded support set S; 3) all densities are strictly lower
bounded on their support sets. Additionally, we make the same as-
sumption on the boundary of the support as in [26]: 4) the support is
smooth wrt the kernel K(u) in the sense that the expectation of the
area outside of S wrt any RV u with smooth distribution is a smooth
function of the bandwidth h. This assumption is satisfied, for exam-
ple, when S is the unit cube and K(x) is the uniform rectangular
kernel. See [28, 29] for details on the assumptions.

Theorem 1. If g is infinitely differentiable, then the biases are

B
[
G̃h,ij

]
=

bsc∑
m=1

c5,i,j,mh
m +O

(
1

Nh2
+ hs

)

B
[
G̃h

]
=

bsc∑
m=1

c6,mh
m +O

(
1

Nhd
+ hs

)
. (4)

If g (t1/t2) also has k, l-th order mixed derivatives ∂k+lg(t1/t2)

∂tk1∂t
l
2

that depend on t1, t2 only through tα1 t
β
2 for some α, β ∈ R for each
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1 ≤ k, l ≤ λ then the bias of G̃h is

B
[
G̃h

]
=

bsc∑
m=1

c6,mh
m +

bsc∑
m=0

bλ/2c∑
q=1

(
c7,1,q,m
(Nhd)q

+
c7,2,q,m
(Nh2)q

)
hm

+O

(
1

(Nhd)λ/2
+ hs

)
. (5)

The constants in (4) and (5) are independent of h and N . The
expression in (5) allows us to achieve the parametric MSE rate of
O(1/N) under less restrictive assumptions on the smoothness of the
densities (s > d/2 for (5) compared to s ≥ d for (4)). The ex-
tra condition required on the mixed derivatives of g to obtain the
expression in (5) is satisfied, for example, for Shannon and Rényi
information measures. Note that a similar expression could be de-
rived for the bias of G̃h,ij . However, since s ≥ 2 is required and the
largest dimension of the densities estimated in G̃h,ij is 2, we would
not achieve any theoretical improvement in the convergence rate.

Theorem 2. If the functional g(t1/t2) is Lipschitz continuous in
both of its arguments with Lipschitz constant Cg , then the variance
of both G̃h and G̃h,ij is O(1/N).

The Lipschitz assumption on g is comparable to assumptions
required by other nonparametric distributional functional estima-
tors [20–22, 26] and is ensured for functionals such as Shannon
and Rényi informations by our assumption that the densities are
bounded away from zero. The proofs of Theorems 1 and 2 share
some similarities with the bias and variance proofs for the diver-
gence functional estimators in [26]. The primary differences deal
with the product of KDEs. See the appendices for the full proofs.

From Theorems 1 and 2, letting h → 0 and Nh2 → ∞ or
Nhd → ∞ is required for the respective MSE of G̃h,ij and G̃h

to go to zero. Without bias correction, the optimal MSE rate is, re-
spectively, O

(
N−2/3

)
and O

(
N−2/(d+1)

)
. Using an optimally

weighted ensemble of estimators enables us to perform bias correc-
tion and achieve much better (parametric) convergence rates [23,26].

The ensemble of estimators is created by varying the bandwidth
h. Choose l̄ = {l1, . . . , lL} to be a set of positive real numbers
and let h(l) be a function of the parameter l ∈ l̄. Define w =

{w(l1), . . . , w(lL)} and G̃w =
∑
l∈l̄ w(l)G̃h(l). Theorem 4 in

[26] indicates that if enough of the terms in the bias expression of
an estimator within an ensemble of estimators are known and the
variance is O(1/N), then the weight w0 can be chosen so that the
MSE rate of G̃w0 is O(1/N), i.e. the parametric rate. The theorem
can be applied as follows. For general g, let h(l) = lN−1/(2d) for
G̃h(l). Denote ψm(l) = lm with m ∈ J = {1, . . . , bsc}. The
optimal weight w0 is obtained by solving

minw ||w||2
subject to

∑
l∈l̄ w(l) = 1,∣∣∑
l∈l̄ w(l)ψm(l)

∣∣ = 0, m ∈ J,
(6)

It can be shown by using the last line in (6) to cancel the lower-order
terms in the bias that the MSE of G̃w0 is O(1/N) as long as s ≥ d.
Similarly, by using the same optimization problem we can define a
weighted ensemble estimator G̃w0,ij of Gij that achieves the para-
metric rate when h(l) = lN−1/4 which results in ψm(l) = lm for
m ∈ J = {1, 2}. These estimators are similar (due to the bandwidth
choice) to the ODin1 divergence estimators defined in [26].

Another estimator of G (p; p′), similar to the ODin2 divergence
estimator (due to bandwidth choice) in [26], can be derived using

(5). Let δ > 0, assume that s ≥ (d + δ)/2, and let h(l) =

lN−1/(d+δ). This results in the function ψ1,m,q(l) = lm−dq for
m ∈ {0, . . . , (d+ δ)/2} and q ∈ {0, . . . , (d + δ)/δ} with the re-
striction that m+ q 6= 0. Additionally we have ψ2,m,q(l) = lm−2q

form ∈ {0, . . . , (d+δ)/2} and q ∈ {1, . . . , (d+δ)/(2(d+δ−2))}.
These functions correspond to the lower order terms in the bias.
Then using (6) with these functions results in a weight vector w0

such that G̃w0 achieves the parametric rate as long as s ≥ (d+δ)/2.
Thus we can achieve the parametric rate for s > d/2.

We conclude this section by giving a CLT. This theorem pro-
vides justification for performing structural hypothesis testing with
the estimators G̃w0 and G̃w0,ij . The proof uses an application of
Slutsky’s Theorem preceded by the Efron-Stein inequality that is
similar to the proof of the CLT of the divergence ensemble estimators
in [26]. The extension of the CLT in [26] to G̃w is analogous to the
extension required in the proof of the variance results in Theorem 2.

Theorem 3. Assume that h = o(1) and Nhd → ∞. If S is a
standard normal random variable, L = |l̄| is fixed, and g is Lipschitz
in both arguments, then

Pr

((
G̃w − E

[
G̃w

])
/

√
V
[
G̃w

]
≤ t

)
→ Pr(S ≤ t).

4. EXPERIMENTS

We perform multiple experiments to demonstrate the utility of our
proposed methods for structure learning of a GM with d = 3 nodes
whose structure is a nonlinear Markov chain from nodes i = 1 to
i = 2 to i = 3. That is, out of a possible 6 edges in a complete
graph, only the node pairs (1, 2) and (2, 3) are connected by edges.
In all experiments, X(1) ∼ Unif(−0.5, 0.5), N(j) ∼ N (0, 0.5),
and N(1) and N(2) are independent. We have N = 500 i.i.d. sam-
ples from X(1) and choose an ensemble of bandwidth parameters
with L = 50 based on the guidelines in [26]. To better control
the variance, we calculate the weight w0 using the relaxed version
of (6) given in [26]. We compare the results of the MI ODin1 and
ODin2 ensemble estimators (δ = 1 in the latter) to the simple plug-
in KDE estimator. All p-values are constructed by applying Theo-
rem 3 where the mean and variance of the estimators are estimated
via bootstrapping. In addition, we studentize the data at each node
by dividing by the sample standard deviation as is commonly done
in entropic machine learning. This introduces some dependency be-
tween the nodes that decreases as O (1/N). This studentization has
the effect of reducing the dependence of the MI on the marginal dis-
tributions and stabilizing the MI estimates. We estimate the Rényi-α
integral for Rényi MI with α = 0.5; i.e. g(u) = uα. Thus if the
ratio of densities within (1) or (2) is 1, the Rényi-α integral is also 1.

In the first type of experiments, we vary the signal-to-noise ratio
(SNR) of a Markov chain by varying the parameter a and setting

X(2) =
(
X(1)

)2

+ aN(1),

X(3) =
(
X(2)

)2

+ aN(2). (7)

In the second type of experiments, we create a cycle within the graph
by fixing b and varying a or vice versa:

X(2) =
(
X(1)

)2

+ aN(1),

X(3) =
(
X(2)

)2

+ bX(1) + aN(2). (8)
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Fig. 1. The mean FDR from 100 trials as a function of a when
estimating the MI between all pairs of RVs for (7) with significance
level γ = 0.1. The dependence between X(1) and X(3) decreases
as the noise increases resulting in lower mean FDR.
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Fig. 2. The average p-value with error bars at the 20th and 80th per-
centiles from 90 trials for the hypothesis test that G(p; p′) = 1 after
running the CL algorithm for (7). The graphs are offset horizontally
for better visualization. Higher noise levels lead to higher error rates
in the CL algorithm and thus lower p-values.

We first use hypothesis testing on the estimated pairwise MI to
learn the structure in (7). We do this by testing the null hypotheses
that each pairwise Rényi-α integral is equal to 1. We do not use the
ODin2 estimator in this experiment as there is no theoretical gain
in MSE over ODin1 for pairwise MI estimation. Figure 1 plots the
mean FDR from 100 trials as a function of a under this setting with
significance level γ = 0.1. In ths case, the FDR is either 0 (no
false discoveries) or 1/3 (one false discovery). Thus the mean FDR
provides an indicator for the number of trials where a false discov-
ery occurs. Figure 1 shows that the mean FDR decreases slowly for
the KDE estimator and rapidly for the ODin1 estimator as the noise
increases. Since X(3) is a function of X(2) which is a function of
X(1), then G13 6= 1. However, as the noise increases, the relative
dependence of X(3) on X(1) decreases and thus G13 approaches 1.
The ODin1 estimator tracks this approach better as the correspond-
ing FDR decreases at a faster rate compared to the KDE estimator.

In the next experiment set, the CL algorithm estimates the tree
structure in (7) and we test the hypothesis thatG(p; p′) = 1 to deter-
mine if the CL algorithm output gives the correct structure. Figure 2
gives the resulting mean p-value with error bars at the 20th and 80th
percentiles from 90 trials. High p-values indicate that both the CL
algorithm performs well and that G(p; p′) is not statistically differ-
ent from 1. The ODin1 estimator generally has higher values than
the ODin2 and KDE estimators which indicates better performance.

The final experiment set focuses on (8) where the CL tree does
not include the edge between X(1) and X(3). We report the p-values
for the hypothesis thatG (p; p′) = 1 when varying either a or b. The
mean p-value with error bars at the 20th and 80th percentiles from
100 trials are given in Figure 3. In the top figure, we fix b = 0.5
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Fig. 3. The mean p-value with error bars at the 20th and 80th per-
centiles from 100 trials for the hypothesis test that G (p; p′) = 1
for (8) when the CL tree does not give the correct structure. Top:
b = 0.5 and a varies. Bottom: a = 0.05 and b varies. The graphs
are offset horizontally for better visualization. Low p-values indi-
cate better performance. The ODin1 estimator generally matches or
outperforms the other estimators, especially in the lower noise cases.

and vary the noise parameter a while in the bottom figure we fix a =
0.05 and vary b. Thus the true structure does not match the CL tree
and low p-values are desired. For low noise in the top figure (fixed
dependency coefficient), the ODin estimators perform better than the
KDE estimator and have less variability. In the bottom figure (fixed
noise), the ODin1 estimator generally outperforms the others.

In general, the ODin1 estimator outperforms the other estimators
in these experiments. Future work includes investigating higher di-
mension (larger number of vertices) and larger sample sizes. Based
on the experiments in [26,28], it is possible that the ODin2 estimator
will perform comparably to the ODin1 estimator and that both ODin
estimators will outperform the KDE estimator in higher dimensions.

5. CONCLUSION

We derived the convergence rates for a kernel density plug-in estima-
tor of MI functionals and proposed nonparametric ensemble estima-
tors with a CLT that achieve the parametric rate when the densities
are sufficiently smooth. We proposed two approaches for hypothesis
testing based on the CLT to learn the factor graph structure of the
joint distribution. The experiments demonstrated the utility of these
approaches in structure learning and the improvement of ensemble
methods over the plug-in method for a low dimensional example.

A principal direction for future work is adapting the MI estima-
tion approaches to higher dimensions. One approach is to explore
alternative density estimation methods that behave better than KDEs
for high feature dimension, e.g., methods incorporating information
preserving dimensionality reduction methods [30, 31]. Another di-
rection is to investigate fast, parallelizable methods for reliably com-
puting the pairwise MI measures over large factor graphs with many
nodes, e.g., in analogy to high dimensional paranormal GMs [32].
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