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ABSTRACT
The 3D X-ray Computed Tomography (CT) is used in many
domains. In medical imaging and industrial Non Destructive
Testing (NDT) applications, this technique becomes of great
interest. In these applications, very often, we need not only to
reconstruct the image, but also to detect the contours between
the homogeneous regions of the piecewise continuous image.
Generally, contours are obtained by a post processing from
the reconstructed image. In this paper, we propose a method
to estimate image and contour simultaneously. For this we
use the Bayesian approach with a prior model in which the
relationship between the image and its contour is considered
by using a hierarchical Markovian model, and use a sparsity
enforcing prior model for the contours. This proposed method
can be used for reconstructions when the image is piecewise
continuous. The simulation results are compared with some
state of the art methods, and they show the efficiency of si-
multaneously reconstructing and edge detecting by using pro-
posed method.

Index Terms— Computed Tomography, Non Destructive
Testing, Simultaneous reconstruction and contour detection,
Markovian Model, and Generalized Student-t distribution

1. INTRODUCTION

X-ray CT is used in many domains. The Radon transform is
one of the commonly used model to describe it.

1.1. X-ray Computed Tomography
In the imaging systems, objects are often observed by us-
ing different techniques: X-rays [1], ultrasound, microwave,
infra-red, etc. Each observation process provides different in-
formation on the object under study. In X-ray CT, the detected
data provides information on the density distribution of the
material inside the object.
The CT image plays an important role in medical and indus-
trial Non Destructive Testing (NDT) applications. Its cross-
sectional images are used for diagnostic and therapeutic pur-
poses in various medical disciplines. Industrial CT scanning
has been used in many areas of industry for internal inspection
of components. In the 3D CT problem, the Graphics Process-
ing Unit (GPU), presented in details in [2], is always used to
accelerate the computation.

In the work of Mumford and Shah in [3], they introduced
the method which estimate the image and at the same time
detect the segmentations and the contours. They estimate the
variables by regularized optimization, in which the l1 penalty
is used to enforce sparsity. The inconvenient in their work is
to chose the parameter values for all the regularization terms.
In our work, we use a Bayesian method to estimate the im-
age and the contours, estimating all the parameters at the
same time. In this Bayesian method, a hierarchical Marko-
vian prior model is defined, which combines the image and
the contour informations. We use the heavy tailed distribution
to enforce the sparsity of the contour. By using the contour
information in the reconstruction of image, the edges of im-
age are preserved. Comparing with the work of Mumford and
Shah, our proposed method considers the relationships be-
tween (1) contour-projection gradient, (2) contour-image, (3)
image-projection and (4) projection-projection gradient. The
sparseness of contour is enforced and controlled by using a
generalized Student-t distribution.

1.2. Forward model: Radon Transform
One of the most commonly used mathematical modelling of
CT imaging is the Radon Transform (RT), presented with de-
tails in [4]. It can be written as:

g(r, φ) =

∫
Lr,φ

f(x, y)dl (1)

where f(x, y) represents the image, g the detected projection
data, r the perpendicular length from center point of coordi-
nate and φ the considered X ray angle. Lr,φ is the length of
ray (r, φ) passing through the image. One property that we
consider in this work is:

f(x, y)→ RT→ g(r, φ), f̈(x, y)→ RT→ g̈(r, φ) (2)

where

f̈(x, y) =

(
∂2

∂x2
+

∂2

∂y2

)
f(x, y), g̈(r, φ) =

∂2

∂r2
g(r, φ) (3)

In the discretized form, the Radon Transform in Equation (1)
can be written as:

gk =Hkf + εk or g =Hf + ε (4)
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where gk is a vector representing the projection at angle φk
and g ∈ RM×1 represents all these vectors putting together.
Hk and H ∈ RM×N are their corresponding linear forward
projection operators. Noted by f̈ the discretized f̈(x, y) and
by g̈k discretized g̈(r, φ), Eq.(2) and Eq.(3) therefore are writ-
ten as: {

g =Hf + ε , g̈ =Hf̈ + ε̈

g̈ =D1g , f̈ =D2f
(5)

where D1 represents the 1-dimensional second order deriva-
tion of g which can be implemented as the following convo-
lution operation:

D1g = [−1 2 − 1] ∗ g,

and D2 represents the discretized Laplacian operator which
can be implemented by the following 2D convolution:

D2f =

 0 −1 0
−1 4 −1
0 −1 0

 ∗ f .
The classical image reconstruction aims at estimating f with
g. In this paper, we propose to use the forward relations in
(5) to simultaneously reconstruct the image f and detect the
contours f̈ by using a Bayesian approach. For this, we use a
hierarchical Markovian prior model to define the image f . Its
hidden contour variables q, which is related to f̈ , is used in
this prior model. A sparsity enforcing Generalized Student-t
prior distribution is used to define the contours.

2. PROPOSED METHOD OF RECONSTRUCTION
OF OBJECT WHILE CONSIDERING CONTOURS

2.1. Forward model
Starting from the forward model in (5) and assuming ε to be
iid Gaussian distributed with variance vε, we quickly get the
likelihood: {

p(g|f , vε) = N (g|Hf , vεI)
p(g̈|f̈ , vε) = N (g̈|Hf̈ , 4vεI).

(6)

It is not difficult to demonstrate that the variance of ε̈, which is
the second order derivation of ε, equals to 4vε. The variance
vε is supposed to be Inverse-Gamma distributed, so that the
value is always positive and approaching to zero.

2.2. Sparsity enforcing Student-t prior model for f̈
When considering the piecewise-continuous image, its Lapla-
cian is sparse with most of the part approaching to zero ex-
cept the contours. As f̈ is sparse, we use a sparsity enforcing
prior to define it. Typically three categories of such distribu-
tions are used to enforce sparseness: the Generalized Gaus-
sian (GG) distributions, the Gaussian mixture distributions
and the heavy-tailed distributions. The generalized Student-t
distribution is heavy-tailed, with the convenient that it can be

expressed as the marginal of a Normal-Inverse Gamma distri-
bution:

St(x|α, β) =
∫
N (x|0, z)IG(z|α, β) dz. (7)

With this property, we can set the following prior model for
f̈ : {

p(f̈ |vb) = N (f̈ |0, vbI)
p(vb|α, β) = IG(vb|α, β).

(8)

where α, β are two hyper-parameters of generalized Student-
t distribution. With these two parameters, comparing with
one-parametered standard Student-t distribution, the sparsity
properties can be controlled more precisely.

2.3. The image-contour hierarchical Markovian model
By using Bayesian approach, prior informations are modeled
as probabilistic distributions. Many prior models which are
suitable for a Bayesian piecewise continuous CT image re-
construction method are discussed in the references [5–8].
In this paper we use a contour-depending Markovian prior
model.
Let note by f(r) the value of the pixel at the position r and
byN r all the four neighbours pixels r′. We use the following
hierarchical contour-depending Markovian model to define f :

p(f(r)|f−r, q, va)

= N (f(r)| 1∑
r′∈Nr (1− qr′)

∑
r′∈Nr

(1− qr′)fr′ , va)

∝ v−
1
2

a exp

−1

2
v−1a

(
f(r)−

∑
r′∈Nr (1− qr′)fr′∑
r′∈Nr (1− qr′)

)2

(9)

where f−r represents all the elements in vector f except
f(r). fr′ represents the four neighbour pixels of fr and va
is the variance of the normal distribution. q is the normalized
f̈ , with the definition: q =

(∣∣∣f̈∣∣∣−min
∣∣∣f̈∣∣∣) /(max

∣∣∣f̈∣∣∣−min
∣∣∣f̈∣∣∣)

.
This distribution describes the fact that: the influence

of fr′ on fr depends on the gradient values at the posi-
tions r′. For each neighbour pixel, when its gradient value
is bigger, its influence on the current pixel is smaller. An
example is given in Fig.(1). The pixel fr in this figure be-
longs to a Gaussian prior distribution: p(fr|fr′ , qr′ , va) =
N
(
fr| 12

(
fr′2 + fr′3

)
, va
)
.

2.4. The model of the system
With the previous propositions, we obtain a hierarchical
model which reconstructs the image and contours simulta-
neously. f belongs to a Gaussian prior distribution which
depends on f̈ , and f̈ belongs to a Generalized Student-t
distribution which enforces the sparsity.
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Fig. 1: Example of the contour-depending Markovian structured
prior model.

By combining the proposed prior distributions of f , of f̈
and of all the other hyper parameters, we obtain the statistical
distribution model of the system:

p(g|f , vε) = N (g|Hf , vεI)
p(g̈|f̈ , vε) = N (g̈|Hf̈ , 4vεI)
p(f |q, va) = N (f | 1∑

r(1−qr)
∑
r(1− qr)fr, vaI)

p(f̈ |vb) = N (f̈ |0,Σb) where Σb = diag [vb]
p(vb|αb0 , βb0) =

∏
j IG(vbj |αb0 , βb0)

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0)
(10)

where q is defined below Eq.(9).

2.5. The Bayes method
The Bayesian inference [9] defines the relationship between
prior and posterior distributions by:

p(f, θ|g) = p(g|f, θ)p(f |θ)p(θ)
p(g)

. (11)

By using the Bayes rule, with all the prior distributions in
Equation (10), the posterior distribution is obtained:

p(f ,f̈ , vε,vb|g, g̈) ∝ p(g|f , vε)p(g̈|f̈ , vε)·
p(f |q)p(f̈ |vb)p(vb|αb0 , βb0)p(vε|αε0 , βε0)

(12)

Here the conditional probabilities: g knowing f and g̈ know-
ing f̈ , are independent.

3. THE ESTIMATION OF VARIABLES

A most commonly used estimation method in Bayesian ap-
proach is the Joint Maximum A Posterior (JMAP), presented
in [10], which estimate the variables and parameters as the
mode of the posterior distribution, by maximizing the poste-
rior distribution:(
f̂ ,
̂̈
f , v̂ε, v̂b

)
JMAP = arg max

f , ¨f ,vε,vb

{
p
(
f , f̈ , vε,vb|g, g̈

)}
(13)

3.1. The iteration updating rules
By maximizing the posterior distribution in Eq.(13), we get

the updating equations. For f̂ and ̂̈f , we use the descent gra-
dient algorithm in order to avoid the calculation of the big size
matrix inversion,

(
HtH

)−1
:

iter : f̂
(k+1)

= f̂
(k)
− γ̂(k)

1 ∇J
(
f̂

(k)
)

(14)

iter :
̂̈
f

(k+1)

g̈ =
̂̈
f

(k)

g̈ − γ̂
(k)
2 ∇J

(̂̈
f

(k)

g̈

)
(15)

̂̈
f =

(̂̈
fg̈ +D2f̂

)
/2 (16)

v̂ε =
βε0 + 1

2

∥∥∥g −Hf̂
∥∥∥2 + 1

8

∥∥∥g̈ −H
̂̈
f
∥∥∥2

αε0 +M + 1
(17)

v̂bj =
βb0 + 1

2

̂̈
f
2

j

αb0 + 3
2

(18)

where

γ̂1 =

∥∥∥∥∇J (f̂
(k)

)

∥∥∥∥2
vε−1

∥∥∥∥H∇J (f̂
(k)

)

∥∥∥∥2+4v−1
a

∥∥∥∥∇J (f̂
(k)

)

∥∥∥∥
J (f̂) =1

2
v̂ε
−1
∥∥∥g −Hf̂

∥∥∥2
+

1

2
v−1
a

∑
j

(
f̂j −

1∑
r p̂rj

∑
r

p̂rj f̂rj

)2

∇J (f̂) = −v̂ε−1Ht
(
g −Hf̂

)
+ v−1

a

(
f̂ − 1

p̂∗hr
p̂f ∗ hr

)
γ̂2 =

∥∥∥∥∇J (
̂̈
f )

∥∥∥∥2
(4v̂ε)−1

∥∥∥∥H∇J (
̂̈
f )

∥∥∥∥2+∥∥∥∥Ŷ b∇J (
̂̈
f )

∥∥∥∥2 where Ŷ b = Σ̂
− 1

2
b

J (̂̈f) = 1
2
(4v̂ε)

−1
∥∥∥g̈ −H

̂̈
f
∥∥∥2 + 1

2

∥∥∥Ŷ b
̂̈
f
∥∥∥2

∇J (̂̈f) = −(4v̂ε)−1Ht
(
g̈ −H

̂̈
f
)
+ Ŷ

t

bŶ b
̂̈
f

(19)
where p̂ = 1−q̂, p̂f = p̂.×f̂ and hr = [0 1 0; 1 0 1; 0 1 0]
is a filter which calculates the sum of four neighbour pix-
els. Fig.(2) shows the directed acyclic graph (DAG) which
presents the principal relationship of the updating of all the
variables in the iterative updating rule in Eq.(14)-Eq.(19).

g -Eq.14 -f̂ --D2
-̂̈ff

?
+h-g̈ -Eq.15 - ̂̈

fg̈
-

q̂6

̂̈
f

6
-

f̂

̂̈
f

ROCC

Fig. 2: DAG of proposed ROCC model.
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4. SIMULATION RESULTS

In the simulations, we use ROCC (Reconstruction of Object
Considering Contours) to represent the proposed method.
Two other hierarchical models are also used in the simula-
tions: the model with f belonging to a Gaussian distribution
(GaussianF), and belonging to a Student-t distribution (Stu-
dentF).
Fig.(3) compares the performance of different methods apply-
ing on the Shepp Logan image of size 128 × 128. The Least
Square(LS) method, Quadratic Regularization(QR) method,
presented in [11,12], and the two hierarchical modelled meth-
ods are compared with the proposed ROCC method. The LS
and QR methods performs poorly for this ill-posed inverse
problem. The GaussianF method and StudentF method per-
forms well when considering only the quality of the recon-
structed image and the projections, but it can be seen that the
ROCC method works better on the image reconstruction and
at the same time gives more precise reconstructed contours,
in which the contour is not used.

Fig.(4) shows the reconstructed Shepp Logan image and
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Fig. 3: Comparison of all the methods applying with the Shepp
Logan image with 180 projections. These three figures, from top
to bottom, show respectively the relative errors of the image ‖f̂ −
f‖2/‖f‖2, the projections ‖ĝ − g‖2/‖g‖2 and the contours ‖̂̈f −
f̈‖2/‖f̈‖2

its contours. We see from the reconstruction results that the
small details of the image are retained, while the contours are
obtained simultaneously.
The performance of different methods have also be compared

by reconstructing the Walnut image of size 256 × 256. The
comparison of the relative error of the reconstructed image
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Fig. 4: The reconstruction results for the Shepp Logan image. Three
images correspond to (a)the original image, (b)the reconstructed im-
age and (c)the reconstructed contours.

is shown in Fig.(5), and the images are given in Fig.(6). The
results show that the proposed ROCC method works better
than the other methods.
Simulations have also be done with 90 projections, the pro-
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Fig. 5: Comparison of the relative error ‖f̂ − f‖2/‖f‖2 of all the
methods applying with the Walnut image with 180 projections.
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Fig. 6: The reconstructed results for the Walnut image. Three im-
ages correspond to (a)the original image, (b)the reconstructed image
and (c)the reconstructed contours.

posed ROCC method always works better than the other state
of the art methods.

5. CONCLUSION

In this paper we presented the CT image reconstruction by
using a hierarchical Markovian model. This model preserves
the edges of image, and reconstructs simultaneously the im-
age and contours. Simulation results and comparisons with
the state of the art methods shows that our proposed ROCC
method performs better both on reconstruction of object and
contours. This model can also be solved by using the Poste-
rior Mean via Variational Bayesian Approach (VBA) method.
Simulations in 3D application will also be done in our future
work.
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