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ABSTRACT

Two-dimensional principal component analysis (2DPCA)
serves as an efficient approach for both dimensionality re-
duction and high-quality reconstruction. However, conven-
tional 2DPCA method is sensitive to the outliers such that
associated results could be compromised. To strengthen the
robustness of conventional 2DPCA method, we try to propose
a novel robust two-dimensional principal component analysis
with optimal mean (R2DPCA-OM) method to automatically
achieve the optimal mean. Besides, the experimental re-
sults illustrate that the proposed R2DPCA-OM method could
obtain the optimal subspaces and mean, such that dimension-
ality is reduced with less reconstruction error. Consequently,
superiority and effectiveness of the proposed R2DPCA-OM
method could be verified analytically and empirically.

Index Terms— principal component analysis, robustness,
optimal mean.

1. INTRODUCTION

As for the high-quality reconstruction, principal component
analysis (PCA)[1, 2, 3] surely serves as one out of many ef-
fective approaches [4, 5, 6, 7, 8], via which the dimension-
ality reduction could be achieved with minimizing the mean
square error. To avoid coping with data matrix of large di-
mensionality, which is generated by re-shaping each tensor
data into the vector form, two-dimensional principal compo-
nent analysis known as 2DPCA [11, 12, 13, 14] is proposed
for the efficient computation. As a result, not only the dimen-
sionality reduction can be achieved but also the significant
statistical properties for the input data could be maintained
under 2DPCA. Although 2DPCA is much more efficient than
PCA in diverse aspects, classical 2DPCA is still sensitive to
the outliers, such that related experimental results of 2DPCA
could be erroneous.

To address the defect previously mentioned, a novel ro-
bust 2DPCA method is proposed to achieve the optimal
mean automatically in this paper. Different from traditional
2DPCA method, the proposed method utilizes the robust
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Fig. 1. The comparisons of data reconstruction are performed
for R2DPCA-OM and 2DPCA[11] over the dataset FERET,
where d is the reduced dimensionality.

2DPCA with optimal mean (R2DPCA-OM) as the objective
function, which is robust to the outliers. Besides, associated
algorithm seeks the optimal mean in each iteration instead
of traditional data preprocessing, such that input data is cen-
tralized. Moreover, the proposed R2DPCA-OM method has
a self-adaptive weight, which assigns the smaller weight to
the term with larger outliers automatically to promote the ro-
bustness. Furthermore, the proposed R2DPCA-OM method
could be extended into the capped R2DPCA-OM method to
deal with even more ill-defined situation.

2. ROBUST 2DPCA WITH OPTIMAL MEAN

With centered tensor sample χi ∈ RI1×I2×...×IN , (i = 1,2,
. . . ,m), multilinear PCA (MPCA)[15, 16] could be illus-
trated as

min
Si,U(j)

m∑
i=1

‖χi − Si ×1 U(1) ×2 U(2) ×3 . . .×N U(N)‖2

(1)
where U(j), (j = 1,2, . . . ,N) is the orthonormal projection
and Si, (i = 1,2, . . . ,m) is the core tensor.

Apparently, two-dimensional PCA (2DPCA)[11] serves
as a special case (N = 2) of MPCA in (1). Accordingly, the
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(c) Capped 2DPCA-OM(our)

Fig. 2. The comparisons of reconstruction error are performed for 2DPCA [11], R2DPCA-OM and capped R2DPCA-OM under
the noised data of dataset FEI.

Table 1. The reconstruction error under 2 different measures.
YALE(×103) The measure m = ‖ · ‖∗

k1 × k2 40× 25 8× 60 80× 40
capped R2DPCA-OM 5.0499 6.3413 2.8597

R2DPCA-OM 5.0499 6.3638 2.8561
2DPCA[11] 5.3381 6.3653 3.3154

UMIST(×103) The measure m = ‖ · ‖F
k1 × k2 30× 30 35× 55 65× 60

capped R2DPCA-OM 2.6707 2.0671 0.5798
R2DPCA-OM 2.6686 2.0939 0.5811
2DPCA[11] 2.6736 2.1050 0.6654

2DPCA problem can be represented as

min
M,Bi,U,V

l∑
i=1

‖Ai −M−UBiV
T‖2F

s.t. UTU = Ik1 and VTV = Ik2 (2)

where M ∈ Rm×n,Bi ∈ Rk1×k2 ,U ∈ Rm×k1 and V ∈
Rn×k2 are the associated variables with the data point
Ai ∈ Rm×n, (i = 1,2, . . . , l). Besides, M serves as mean
matrix, while U and V serve as the projection matrices in Eq.
(2). Since Bi is free from any constraint, we could achieve
the extreme value condition w.r.t. Bi in (2) as

∂
∑l

i=1 ‖Ai −M−UBiV
T‖2F

∂Bi
= 0

⇒ Bi = UT(Ai −M)V.

(3)

By virtue of Eq. (3), problem (2) can be simplified into

min
M,U,V

l∑
i=1

‖Ai −M−UUT(Ai −M)VVT‖2F

s.t. UTU = Ik1 and VTV = Ik2 . (4)

Given the possible situation that the outliers might be
large for certain i-th term in (4), current 2DPCA not only
could not mitigate related situation but might worsen it as
well. Therefore, we will try to enhance the robustness of
2DPCA in (4). Accordingly, robust 2DPCA problem can be
represented as

min
M,U,V

l∑
i=1

‖Ai −M−UUT(Ai −M)VVT‖F

s.t. UTU = Ik1 and VTV = Ik2 . (5)

Motivated by [3] and [17], robust 2DPCA with optimal mean
(R2DPCA-OM) problem can be proposed as the following re-
weighted form to solve the robust 2DPCA problem in (5)

min
M,U,V

l∑
i=1

wi‖Ai −M−UUT(Ai −M)VVT‖2F

s.t. UTU = Ik1 and VTV = Ik2 (6)

where the weight wi ← 1
2‖Ai−M−UUT(Ai−M)VVT‖F is to

be updated iteratively in the algorithm 1. The major superior-
ity of the proposed re-weighted form as R2DPCA-OM in (6)
is connected with the self-adaptive weight. In other words,
the smaller weight would be assigned to the term with larger
outliers automatically.

Besides, the objective function J(M,U,V) of the prob-
lem (6) could further be expanded into

J(M,U,V)=

l∑
i=1

wiTr(A
T
i Ai +MTM− 2MTAi−

(Ai −M)TUUT(Ai −M)VVT).
(7)

Based on the result in (7) and the extreme value condition
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Table 2. The reconstruction error under the dataset FERET.
The measure m = ‖ · ‖F (×103)

Dimensionality 2 × 2 4 × 4 6 × 6 8 × 8
R2DPCA-OM 1.0128 0.8605 0.7295 0.6364
2DPCA[11] 1.0913 0.9254 0.7642 0.6509

w.r.t. M, we have

∂J(M,U,V)

∂M
= 0

⇒
l∑

i=1

wi(M−Ai) = UUTRVVT = UN1V
T.

On the other hand, the term as
∑l

i=1 wi(M−Ai) can be
disintegrated into

l∑
i=1

wi(M−Ai) =UN1V
T +UN2V

T +UN3V
T

+UN4V
T

(8)

where U and V are the orthogonal complement spaces for U
and V respectively with Ni, (i = 1,2,3,4) being the coef-
ficient matrix. Based on Eq. (7) and (8), M can be derived
as

UN2V
T +UN3V

T
+UN4V

T
= 0

⇒M =

∑l
i=1 wiAi∑l
i=1 wi

+UNVT

where N ∈ Rk1×k2 is an arbitrary constant matrix. By sub-
stituting M =

∑l
i=1 wiAi∑l
i=1 wi

+UNVT, Eq. (6) can be refor-
mulated into

min
M,UTU=Ik1

,VTV=Ik2

l∑
i=1

wi‖Ai −
∑l

i=1 wiAi∑l
i=1 wi

−

UUT(Ai −
∑l

i=1 wiAi∑l
i=1 wi

)VVT‖2F

(9)
where both U and V are orthogonal matrices. Based on above
result, we notice that Eq. (9) does not depend on the coeffi-
cient matrix N. Hence, we could choose N as null matrix for
the convenience, such that the optimal mean M1 can be de-
livered as M =

∑l
i=1 wiAi∑l
i=1 wi

. Based on Eq. (9) and the optimal
mean above, Eq. (6) can be further rewritten as

max
U,V

l∑
i=1

wiTr(U
T(Ai −M)VVT(Ai −M)TU)

s.t. UTU = Ik1 and VTV = Ik2 (10)
1Moreover, the optimal mean for the problem (2) can be easily gained by

substituting wi = 1 as M = 1
l

∑l
i=1 Ai.

R2DPCA-OM
(our)

2DPCA

2 × 2 4 × 4 6 × 6 8 × 8

Fig. 3. Samples of the reconstructed images under the table
2.

Input: Ai ∈ Rm×n, (i = 1,2, . . . , l).
Output: Y = UTCV represents the projection,

which reduces the dimensionality of C to
Rk1×k2 for any given data C ∈ Rm×n.

1 Initialize wi = 1, (i = 1,2, . . . , l) and VVT = In;
2 while not converge do
3 Update M←

∑l
i=1 wiAi∑l
i=1 wi

;

4 Update P1 ←
l∑

i=1

wi(Ai −M)VVT(Ai −M)T;

5 Update U← argmax
UTU=Ik1

Tr(UTP1U);

6 Update P2 ←
l∑

i=1

wi(Ai −M)TUUT(Ai −M);

7 Update V← argmax
VTV=Ik2

Tr(VTP2V);

8 for i = 1 : n do
9 Update wi ← 1

2‖Ai−M−UUT(Ai−M)VVT‖F ;
10 end
11 end
12 return U ∈ Rm×k1 and V ∈ Rn×k2 ;
Algorithm 1: Robust 2DPCA with optimal mean
(R2DPCA-OM) method under the problem (6)

where M =
∑l

i=1 wiAi∑l
i=1 wi

.
According to Eq. (10), the R2DPCA-OM method can be

proposed in the algorithm 1 correspondingly.
•Extension of the robust 2DPCA problem in (5). Given

the possible situation that the outliers might be extraordinar-
ily huge for certain i-th term in (5), the superiority of the pro-
posed robust problem in (5) and (6) might be largely compro-
mised. Actually, we could address this situation by introduc-
ing the capped form of the problem (5) as

min
M,U,V

(

l∑
i=1

min(‖Ai −M−UUT(Ai −M)VVT‖F, ε))

s.t. UTU = Ik1 and VTV = Ik2 (11)

where ε is the threshold parameter. We could observe that if
the outliers of certain i-th term in (11) is very large, Eq. (11)
would automatically replace the related term by the threshold
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Table 3. The average recognition rate comparisons.

Dataset Method Recognition rate Recognition rate
on the original data Xo

i on the noised data Xo
i +Xn

i

AT&T

PCA[1] 88.00±0.56% 80.55±0.81%
RPCA-OM[3] 91.05±0.52% 87.61±0.58%
2DPCA[11] 90.64±0.94% 82.93±0.70%

R2DPCA-OM(our) 92.13±0.48% 88.32±0.34%
Capped R2DPCA-OM(our) 91.78±0.44% 88.45±0.32%

USPS

PCA[1] 90.63±0.58% 84.01±0.86%
RPCA-OM[3] 92.28±0.41% 89.25±0.48%
2DPCA[11] 91.86±0.60% 85.74±0.96%

R2DPCA-OM(our) 93.30±0.83% 89.56±0.54%
Capped R2DPCA-OM(our) 93.44±0.75% 89.30±0.33%

ε. In other words, the capped R2DPCA-OM in (11) could
avoid the ill-defined situation mentioned above. Besides,
solving the problem (11) is basically the same as solving
the problem (5) as previously mentioned. The only differ-
ence reflects on a novel threshold-sensitive weight, which is
introduced to the proposed R2DPCA-OM in (6) as

wi =
Ind

2‖Ai −M−UUT(Ai −M)VVT‖F
(12)

where the indicative function Ind is defined as

Ind =

{
1, ‖Ai −M−UUT(Ai −M)VVT‖F ≤ ε
0, Otherwise

.

Equipped with the weight defined in (12), the algorithm 1
could be extended to unraveling the capped robust 2DPCA in
(11) correspondingly.

3. EXPERIMENT

In this section, numerical experiments are performed to verify
the effectiveness of the proposed approaches.

3.1. Reconstruction Error Comparison

Firstly, we compare the proposed robust 2DPCA with opti-
mal mean (R2DPCA-OM) and capped R2DPCA-OM with
the 2DPCA approach[11] on three datasets as FEI, UMIST
and YALE via the reconstruction error. We randomly select
25% of each dataset and set 20% size of the selected images
with Gaussian noise to compare the reconstruction error rep-
resented by

∑
i m(Xo

i −Xr
i ), where Xo

i is the original im-
age and Xr

i is the reconstructed data. Moreover, the measure
m is chosen as both ‖ · ‖F and ‖ · ‖∗ to ensure a just compar-
ison.

1. From the figure 1 and 3, we can observe that the
R2DPCA-OM approach gain the reconstructed data with uni-
formly better quality compared to the 2DPCA[11] method
under the same reduced dimensionality.

2. From the figure 2 and the table 1, reconstruction er-
rors of the proposed R2DPCA-OM and capped R2DPCA-
OM methods are consistently less than that of the 2DPCA
method[11] under both measures.

3. From the figure 2, we could observe that surfaces of
the proposed R2DPCA-OM and capped R2DPCA-OM meth-
ods are more smooth than that of the 2DPCA method, which
represent stronger robustness to the outliers for the proposed
approaches.

3.2. Recognition Rate Comparison

Finally, we compare the average recognition rates of PCA[1],
RPCA-OM[3], 2DPCA[11], R2DPCA-OM and capped R2DP
CA-OM in the table 3 based on both the original data Xo

i and
the noised data Xo

i +Xn
i , where the noise term Xn

i is ran-
domly generated. Besides, we utilize the datasets as AT&T
and USPS, in which the training sets and the test sets are ran-
domly chosen. Classification accuracy is further compared
via shortest distance classifier.

1. From the table 3, R2DPCA-OM and capped R2DPCA-
OM perform consistently better than other three approaches
on the recognition rate especially under the noised data due
to their robustness.

4. CONCLUSION

In this paper, we propose and investigate the robust two-
dimensional principal component analysis with optimal
mean. With seeking the optimal mean in each iteration,
both the R2DPCA-OM and the capped R2DPCA-OM meth-
ods achieve the optimal subspaces with less reconstruction
errors. Via the application of both proposed approaches, the
dimensionality can be reduced with high-quality reconstruc-
tion. Eventually, the effectiveness and the superiority of the
proposed R2DPCA-OM and capped R2DPCA-OM methods
are verified empirically and analytically.
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